2. Let [tex]$G$[/tex] be an abelian group and let [tex]$\varphi: G \rightarrow G$[/tex] be defined by [tex][tex]$\varphi(a) = a^2$[/tex][/tex].

Since [tex]$\varphi(ab) = (ab)^2 = a^2 b^2 = \varphi(a) \varphi(b)$[/tex], [tex]$\varphi$[/tex] is a homomorphism of [tex][tex]$G$[/tex][/tex] into itself. It need not be onto; the reader should check that in [tex]$U_8$[/tex] (see Section 4), [tex]$a^2 = e$[/tex] for all [tex][tex]$a \in U_8$[/tex][/tex], so [tex]$\varphi(G) = (e)$[/tex].



Answer :

Given that [tex]\( G \)[/tex] is an abelian group and [tex]\(\varphi: G \rightarrow G\)[/tex] is defined by [tex]\(\varphi(a) = a^2\)[/tex], we want to check if [tex]\(\varphi\)[/tex] is a homomorphism and consider its properties for [tex]\( G = U_8 \)[/tex].

1. Checking if [tex]\( \varphi \)[/tex] is a Homomorphism:

To verify that [tex]\(\varphi\)[/tex] is a homomorphism, we need to show that for all [tex]\( a, b \in G \)[/tex], [tex]\(\varphi(ab) = \varphi(a) \varphi(b)\)[/tex].

Given that [tex]\(\varphi(a) = a^2\)[/tex] and [tex]\( \varphi(b) = b^2 \)[/tex]:

[tex]\[ \varphi(ab) = (ab)^2 \][/tex]

Since [tex]\( G \)[/tex] is abelian, the group operation is commutative, i.e., [tex]\( ab = ba \)[/tex]. Therefore,

[tex]\[ (ab)^2 = ab \cdot ab = a \cdot b \cdot a \cdot b = a \cdot a \cdot b \cdot b = a^2 b^2 = \varphi(a) \varphi(b) \][/tex]

Thus, [tex]\(\varphi(ab) = \varphi(a) \varphi(b)\)[/tex], confirming that [tex]\(\varphi\)[/tex] is a homomorphism.

2. Considering [tex]\( \varphi \)[/tex] in Context of [tex]\( U_8 \)[/tex]:

The group [tex]\( U_8 \)[/tex] is the group of units modulo 8, consisting of elements that are relatively prime to 8. The elements of [tex]\( U_8 \)[/tex] are:
[tex]\[ U_8 = \{ 1, 3, 5, 7 \} \][/tex]

Let's apply [tex]\(\varphi\)[/tex] to each element in [tex]\( U_8 \)[/tex]:

[tex]\[ \varphi(1) = 1^2 \equiv 1 \pmod{8} \][/tex]
[tex]\[ \varphi(3) = 3^2 \equiv 9 \equiv 1 \pmod{8} \][/tex]
[tex]\[ \varphi(5) = 5^2 \equiv 25 \equiv 1 \pmod{8} \][/tex]
[tex]\[ \varphi(7) = 7^2 \equiv 49 \equiv 1 \pmod{8} \][/tex]

In each case, we find that [tex]\(\varphi(a) = a^2 \equiv 1 \pmod{8}\)[/tex]. Therefore, for every [tex]\(a \in U_8\)[/tex], [tex]\(\varphi(a) = 1\)[/tex], which means the image of [tex]\( \varphi \)[/tex]:

[tex]\[ \varphi(U_8) = \{ 1 \} \][/tex]

Hence, [tex]\(\varphi(G) \)[/tex] is the trivial subgroup [tex]\(\{e\}\)[/tex], where [tex]\( e \)[/tex] is the identity element of the group, which in this case corresponds to 1.

In summary, [tex]\(\varphi\)[/tex] is indeed a homomorphism, but it is not onto because the image of [tex]\(\varphi\)[/tex] for [tex]\( G = U_8 \)[/tex] is the trivial subgroup [tex]\(\{1\}\)[/tex].