To add the fractions [tex]\(\frac{1}{3}\)[/tex] and [tex]\(\frac{1}{4}\)[/tex], Shari should follow these steps:
1. Find a common denominator: For the fractions [tex]\(\frac{1}{3}\)[/tex] and [tex]\(\frac{1}{4}\)[/tex], the least common multiple of the denominators 3 and 4 is 12. This will be the common denominator.
2. Convert each fraction to an equivalent fraction with the common denominator:
- For [tex]\(\frac{1}{3}\)[/tex]:
[tex]\[
\frac{1}{3} = \frac{1 \times 4}{3 \times 4} = \frac{4}{12}
\][/tex]
- For [tex]\(\frac{1}{4}\)[/tex]:
[tex]\[
\frac{1}{4} = \frac{1 \times 3}{4 \times 3} = \frac{3}{12}
\][/tex]
3. Add the converted fractions:
[tex]\[
\frac{4}{12} + \frac{3}{12} = \frac{4 + 3}{12} = \frac{7}{12}
\][/tex]
Therefore, the next step in Shari's calculations should be:
[tex]\[
\frac{4}{12} + \frac{3}{12} = \frac{7}{12}
\][/tex]
So, the correct choice is:
[tex]\[
4 / 12 + 3 / 12 = 7 / 12
\][/tex]