Solve for [tex]x[/tex]:

[tex]\[3x = 6x - 2\][/tex]

---

Given the equations:

[tex]\[4 \sqrt[3]{y^2} = \sqrt[6]{x} \][/tex]
[tex]\[y = \sqrt[n]{x}\][/tex]

Find the value of [tex]n[/tex].



Answer :

To solve for [tex]\( n \)[/tex] given the two equations:

[tex]\[ 4 \sqrt[3]{y^2} = \sqrt[6]{x} \][/tex]

and

[tex]\[ y = \sqrt[n]{x}, \][/tex]

we can follow these steps:

1. Express the equations in terms of exponents:

The first equation [tex]\( 4 \sqrt[3]{y^2} = \sqrt[6]{x} \)[/tex] can be rewritten using exponents. Recall that [tex]\(\sqrt[3]{y^2}\)[/tex] is [tex]\( (y^2)^{1/3} \)[/tex] and [tex]\(\sqrt[6]{x}\)[/tex] is [tex]\( x^{1/6} \)[/tex]:

[tex]\[ 4 (y^2)^{1/3} = x^{1/6} \][/tex]

Simplify the left-hand side:

[tex]\[ 4 y^{2/3} = x^{1/6} \][/tex]

2. Substitute [tex]\( y \)[/tex] from the second equation into the first equation:

From the second equation, [tex]\( y = \sqrt[n]{x} \)[/tex], you can write [tex]\( y \)[/tex] as:

[tex]\[ y = x^{1/n} \][/tex]

Substitute [tex]\( y = x^{1/n} \)[/tex] into the first equation:

[tex]\[ 4 (x^{1/n})^{2/3} = x^{1/6} \][/tex]

Simplify the left-hand side by multiplying the exponents:

[tex]\[ 4 x^{(1/n) \cdot (2/3)} = x^{1/6} \][/tex]

[tex]\[ 4 x^{2/(3n)} = x^{1/6} \][/tex]

3. Equate the exponents since the bases are the same:

Both sides of the equation have the base [tex]\( x \)[/tex] (assuming [tex]\( x \neq 0 \)[/tex]). Therefore, we can set the exponents equal to each other:

[tex]\[ \frac{2}{3n} = \frac{1}{6} \][/tex]

4. Solve for [tex]\( n \)[/tex]:

Cross-multiply to solve for [tex]\( n \)[/tex]:

[tex]\[ 2 \cdot 6 = 1 \cdot 3n \][/tex]

[tex]\[ 12 = 3n \][/tex]

Divide both sides by 3:

[tex]\[ n = 4 \][/tex]

Thus, the value of [tex]\( n \)[/tex] is:

[tex]\[ n = 4 \][/tex]