Given that

[tex]g \propto \frac{1}{m}[/tex],

when [tex]m=4[/tex], the value of [tex]g[/tex] is 4.2. What is the value of [tex]g[/tex] when [tex]m=3[/tex]?

Give any decimal answers to 1 d.p.



Answer :

Given that [tex]\( g \)[/tex] is inversely proportional to [tex]\( m \)[/tex], we have the relationship

[tex]\[ g \propto \frac{1}{m} \][/tex]

This can be written as:

[tex]\[ g = \frac{k}{m} \][/tex]

where [tex]\( k \)[/tex] is a constant.

We are given that when [tex]\( m = 4 \)[/tex], [tex]\( g = 4.2 \)[/tex]. Using these values, we can find [tex]\( k \)[/tex]:

[tex]\[ 4.2 = \frac{k}{4} \][/tex]

Multiplying both sides by 4 to solve for [tex]\( k \)[/tex]:

[tex]\[ k = 4.2 \times 4 = 16.8 \][/tex]

Now, we need to find the value of [tex]\( g \)[/tex] when [tex]\( m = 3 \)[/tex]. Using the formula [tex]\( g = \frac{k}{m} \)[/tex]:

[tex]\[ g = \frac{16.8}{3} \][/tex]

Dividing 16.8 by 3 gives us:

[tex]\[ g = 5.6 \][/tex]

Therefore, the value of [tex]\( g \)[/tex] when [tex]\( m = 3 \)[/tex] is

[tex]\[ \boxed{5.6} \][/tex]