Solve for [tex]x[/tex]:
[tex]\[ 3x = 6x - 2 \][/tex]

---

Format the following question or task so that it is easier to read.
Fix any grammar or spelling errors.
Remove phrases that are not part of the question.
Do not remove or change LaTeX formatting.
Do not change or remove [tex] [/tex] tags.
If the question is nonsense, rewrite it so that it makes sense.
-----
[tex]\[(x-2)^2+(y+2)^2=[?]\][/tex]
-----

Response:
Find the value of the expression:
[tex]\[ (x-2)^2 + (y+2)^2 = ? \][/tex]



Answer :

Sure, let's solve the expression [tex]\((x-2)^2 + (y+2)^2\)[/tex] step by step.

### Step 1: Expand [tex]\((x-2)^2\)[/tex]

First, recall that the square of a binomial is given by:
[tex]\[ (a - b)^2 = a^2 - 2ab + b^2 \][/tex]

Applying this formula to [tex]\((x-2)^2\)[/tex]:
[tex]\[ (x-2)^2 = x^2 - 2 \cdot x \cdot 2 + 2^2 = x^2 - 4x + 4 \][/tex]

### Step 2: Expand [tex]\((y+2)^2\)[/tex]

Similarly, recall that:
[tex]\[ (a + b)^2 = a^2 + 2ab + b^2 \][/tex]

Applying this formula to [tex]\((y+2)^2\)[/tex]:
[tex]\[ (y+2)^2 = y^2 + 2 \cdot y \cdot 2 + 2^2 = y^2 + 4y + 4 \][/tex]

### Step 3: Combine the expanded expressions

Now we need to add the two expanded expressions together:
[tex]\[ (x-2)^2 + (y+2)^2 = (x^2 - 4x + 4) + (y^2 + 4y + 4) \][/tex]

### Step 4: Simplify the result

Combine like terms:
[tex]\[ x^2 - 4x + 4 + y^2 + 4y + 4 \][/tex]

This simplifies to:
[tex]\[ x^2 + y^2 - 4x + 4y + 8 \][/tex]

### Final Answer

Thus, the simplified form of the expression [tex]\((x-2)^2 + (y+2)^2\)[/tex] is:
[tex]\[ \boxed{x^2 + y^2 - 4x + 4y + 8} \][/tex]