In [tex]$\Delta xyz$[/tex], [tex]$\angle y = 90^{\circ}$[/tex], [tex]$\angle z = a^{\circ}$[/tex], and [tex]$\angle x = \left(a + 30^{\circ}\right)$[/tex].

If [tex]$xz = 24$[/tex], find [tex]$xy$[/tex] and [tex]$yz$[/tex].



Answer :

To solve for the lengths [tex]\(xy\)[/tex] and [tex]\(yz\)[/tex] in the triangle [tex]\(\Delta xyz\)[/tex] where [tex]\(\angle y = 90^\circ\)[/tex], [tex]\(\angle z = a^\circ\)[/tex], and [tex]\(\angle x = (a + 30)^\circ\)[/tex], we follow these steps:

1. Sum of Angles in a Triangle:
- Given that the sum of angles in any triangle is [tex]\(180^\circ\)[/tex]:
[tex]\[ \angle x + \angle y + \angle z = 180^\circ \][/tex]
- Substitute the given angles:
[tex]\[ (a + 30)^\circ + 90^\circ + a^\circ = 180^\circ \][/tex]
- Combine like terms:
[tex]\[ 2a + 120 = 180 \][/tex]
- Solve for [tex]\(a\)[/tex]:
[tex]\[ 2a = 60 \implies a = 30 \][/tex]

Therefore,
[tex]\[ \angle z = 30^\circ \quad \text{and} \quad \angle x = 30 + 30 = 60^\circ \][/tex]

2. Given Side Length:
- The length of the hypotenuse [tex]\(xz\)[/tex] is given as 24.

3. Using Trigonometric Functions in a Right Triangle:
- Since we are given a right triangle with [tex]\(\angle y = 90^\circ\)[/tex], we can use the sine and cosine functions to find the other two sides.

4. Finding [tex]\(yz\)[/tex] (adjacent to [tex]\(\angle x = 60^\circ\)[/tex]):
- The cosine of an angle in a right triangle is the ratio of the adjacent side to the hypotenuse:
[tex]\[ \cos(60^\circ) = \frac{yz}{xz} \][/tex]
- Given [tex]\(\cos(60^\circ) = 0.5\)[/tex] and [tex]\(xz = 24\)[/tex]:
[tex]\[ 0.5 = \frac{yz}{24} \][/tex]
- Solve for [tex]\(yz\)[/tex]:
[tex]\[ yz = 24 \times 0.5 = 12 \][/tex]

5. Finding [tex]\(xy\)[/tex] (opposite to [tex]\(\angle x = 60^\circ\)[/tex]):
- The sine of an angle in a right triangle is the ratio of the opposite side to the hypotenuse:
[tex]\[ \sin(60^\circ) = \frac{xy}{xz} \][/tex]
- Given [tex]\(\sin(60^\circ) = \frac{\sqrt{3}}{2}\)[/tex] and [tex]\(xz = 24\)[/tex]:
[tex]\[ \frac{\sqrt{3}}{2} = \frac{xy}{24} \][/tex]
- Solve for [tex]\(xy\)[/tex]:
[tex]\[ xy = 24 \times \frac{\sqrt{3}}{2} = 12\sqrt{3} \approx 20.7846 \][/tex]

Thus, the lengths of the sides are:
- [tex]\(yz = 12\)[/tex]
- [tex]\(xy = 12\sqrt{3} \approx 20.7846\)[/tex]