Select the correct answer.

The energy of a given wave in the electromagnetic spectrum is [tex]2.64 \times 10^{-21}[/tex] joules, and the value of Planck's constant is [tex]6.6 \times 10^{-34}[/tex] joule seconds. What is the value of the frequency of the wave?

A. [tex]4.00 \times 10^{12}[/tex] hertz
B. [tex]2.34 \times 10^{-12}[/tex] hertz
C. [tex]1.30 \times 10^{13}[/tex] hertz
D. [tex]2.52 \times 10^{-6}[/tex] hertz
E. [tex]8.11 \times 10^{-7}[/tex] hertz



Answer :

To determine the frequency of the wave, we will use the relationship between energy ([tex]\(E\)[/tex]), Planck's constant ([tex]\(h\)[/tex]), and frequency ([tex]\(f\)[/tex]). The formula for this relationship is:

[tex]\[ E = h \cdot f \][/tex]

We need to find the frequency, so we rearrange the formula to solve for [tex]\(f\)[/tex]:

[tex]\[ f = \frac{E}{h} \][/tex]

Given:
- The energy [tex]\(E\)[/tex] of the wave is [tex]\(2.64 \times 10^{-21}\)[/tex] joules.
- Planck's constant [tex]\(h\)[/tex] is [tex]\(6.6 \times 10^{-34}\)[/tex] joule seconds.

Substituting the given values into the equation:

[tex]\[ f = \frac{2.64 \times 10^{-21}}{6.6 \times 10^{-34}} \][/tex]

Now, perform the division:

[tex]\[ f = \frac{2.64}{6.6} \times \frac{10^{-21}}{10^{-34}} \][/tex]

Simplifying the coefficients:

[tex]\[ \frac{2.64}{6.6} = 0.4 \][/tex]

Simplifying the exponents:

[tex]\[ \frac{10^{-21}}{10^{-34}} = 10^{13} \][/tex]

Combining these, we get:

[tex]\[ f = 0.4 \times 10^{13} \][/tex]

Or equivalently:

[tex]\[ f = 4.00 \times 10^{12} \][/tex]

Therefore, the frequency [tex]\(f\)[/tex] of the wave is:

[tex]\[ 4.00 \times 10^{12} \text{ hertz} \][/tex]

The correct answer is:
A. [tex]\(4.00 \times 10^{12}\)[/tex] hertz