26. The relative minimum point of the function [tex]f(x)=\frac{x^3}{3}+\frac{5x^2}{2}+4x+3[/tex] is

(A) [tex]\left(-1, -\frac{5}{6}\right)[/tex]

(B) [tex]\left(-1, \frac{7}{6}\right)[/tex]

(C) [tex]\left(-1, \frac{1}{6}\right)[/tex]

(D) [tex]\left(-1, -\frac{17}{6}\right)[/tex]



Answer :

To find the relative minimum point of the function [tex]\( f(x) = \frac{x^3}{3} + \frac{5 x^2}{2} + 4 x + 3 \)[/tex], we will follow these steps:

1. Compute the first derivative [tex]\( f'(x) \)[/tex] to find the critical points.
2. Solve [tex]\( f'(x) = 0 \)[/tex] to find the values of [tex]\( x \)[/tex] where the critical points occur.
3. Compute the second derivative [tex]\( f''(x) \)[/tex] to determine the concavity of the function at the critical points.
4. Evaluate [tex]\( f''(x) \)[/tex] at the critical points to identify whether each critical point is a local minimum, maximum, or neither.
5. Determine the corresponding [tex]\( y \)[/tex]-coordinate for the local minimum point.

Let's proceed step-by-step:

### Step 1: Compute the First Derivative
First, compute the first derivative [tex]\( f'(x) \)[/tex] of the given function:

[tex]\[ f'(x) = \frac{d}{dx}\left( \frac{x^3}{3} + \frac{5 x^2}{2} + 4 x + 3 \right) \][/tex]

Using the power rule:

[tex]\[ f'(x) = x^2 + 5x + 4 \][/tex]

### Step 2: Solve [tex]\( f'(x) = 0 \)[/tex]
Set the first derivative equal to zero to find the critical points:

[tex]\[ x^2 + 5x + 4 = 0 \][/tex]

Factor the quadratic equation:

[tex]\[ (x + 4)(x + 1) = 0 \][/tex]

So, the critical points are:

[tex]\[ x = -4 \quad \text{and} \quad x = -1 \][/tex]

### Step 3: Compute the Second Derivative
Next, compute the second derivative [tex]\( f''(x) \)[/tex]:

[tex]\[ f''(x) = \frac{d}{dx}\left( x^2 + 5x + 4 \right) = 2x + 5 \][/tex]

### Step 4: Evaluate [tex]\( f''(x) \)[/tex] at the Critical Points
Evaluate the second derivative at each critical point to determine the nature of each critical point:

- For [tex]\( x = -4 \)[/tex]:

[tex]\[ f''(-4) = 2(-4) + 5 = -8 + 5 = -3 \][/tex]

Since [tex]\( f''(-4) < 0 \)[/tex], the function has a local maximum at [tex]\( x = -4 \)[/tex].

- For [tex]\( x = -1 \)[/tex]:

[tex]\[ f''(-1) = 2(-1) + 5 = -2 + 5 = 3 \][/tex]

Since [tex]\( f''(-1) > 0 \)[/tex], the function has a local minimum at [tex]\( x = -1 \)[/tex].

### Step 5: Find the [tex]\( y \)[/tex]-coordinate of the Local Minimum
Evaluate the original function at [tex]\( x = -1 \)[/tex] to determine the corresponding [tex]\( y \)[/tex]-coordinate:

[tex]\[ f(-1) = \frac{(-1)^3}{3} + \frac{5(-1)^2}{2} + 4(-1) + 3 \][/tex]

Simplify the expression:

[tex]\[ f(-1) = \frac{-1}{3} + \frac{5}{2} - 4 + 3 \][/tex]

[tex]\[ f(-1) = -\frac{1}{3} + \frac{5}{2} - 1 \][/tex]

Convert to a common denominator (6):

[tex]\[ f(-1) = -\frac{2}{6} + \frac{15}{6} - \frac{6}{6} \][/tex]

[tex]\[ f(-1) = \frac{7}{6} \][/tex]

Therefore, the local minimum point is:

[tex]\[ \left( -1, \frac{7}{6} \right) \][/tex]

Hence, the correct answer is:
[tex]\[ \text{(B)} \left( -1, \frac{7}{6} \right) \][/tex]