Simplify the following expression:
[tex]\[ \frac{a^{m} \times b^{n} \times c^{ab}}{m^a \times n^b \times \left(b^a\right)^c} \][/tex]



Answer :

To simplify the given expression:

[tex]\[ \frac{a^{m} \times b^{n} \times c^{ab}}{m^a \times n^b \times (b^a)^c} \][/tex]

we can follow these steps:

1. Identify the components in both the numerator and the denominator.

Numerator: [tex]\(a^{m} \times b^{n} \times c^{ab}\)[/tex]

Denominator: [tex]\(m^a \times n^b \times (b^a)^c\)[/tex]

2. Rewrite the denominator’s term [tex]\((b^a)^c\)[/tex].

According to the power of a power property, [tex]\((x^m)^n = x^{mn}\)[/tex]. Thus,

[tex]\((b^a)^c = b^{ac}\)[/tex]

Now the expression in the denominator becomes:

[tex]\(m^a \times n^b \times b^{ac}\)[/tex]

3. Combine the like terms in the numerator and the denominator.

At this step, the original expression can be represented as:

[tex]\[ \frac{a^{m} \times b^{n} \times c^{ab}}{m^a \times n^b \times b^{ac}} \][/tex]

4. Notice that the base 'b' appears in both a multiplication term in the numerator and the denominator. We can combine these terms using the property of exponents: [tex]\(\frac{x^m}{x^n} = x^{m-n}\)[/tex].

[tex]\[ \frac{a^{m} \times b^{n} \times c^{ab}}{m^a \times n^b \times b^{ac}} = \frac{a^{m} \times b^{n-ac} \times c^{ab}}{m^a \times n^b} \][/tex]

5. Since there are no more like terms to combine and the bases in the numerator and the denominator are distinct from each other, this is our simplest form:

Therefore, the simplified form of the given expression is:

[tex]\[ \boxed{\frac{a^{m} \times b^{n-ac} \times c^{ab}}{m^a \times n^b}} \][/tex]

This is the detailed, step-by-step solution for simplifying the given expression.