Answer :

To find the limit of the expression [tex]\(2x + 3x - 14\)[/tex] as [tex]\(x\)[/tex] approaches 2, we can follow these steps:

1. Simplify the expression:
Let's combine like terms in the expression [tex]\(2x + 3x - 14\)[/tex].
[tex]\[ 2x + 3x = 5x \][/tex]
So, the expression simplifies to:
[tex]\[ 5x - 14 \][/tex]

2. Substitute the value of [tex]\(x\)[/tex]:
Now we need to find the limit as [tex]\(x\)[/tex] approaches 2. We substitute [tex]\(x = 2\)[/tex] into the simplified expression [tex]\(5x - 14\)[/tex]:
[tex]\[ 5(2) - 14 \][/tex]

3. Evaluate the expression:
Perform the multiplication and subtraction:
[tex]\[ 5 \cdot 2 = 10 \][/tex]
[tex]\[ 10 - 14 = -4 \][/tex]

Thus, the limit of the expression [tex]\(2x + 3x - 14\)[/tex] as [tex]\(x\)[/tex] approaches 2 is:
[tex]\[ \boxed{-4} \][/tex]