Answer :

Sure! Let's solve the equation [tex]\( 7 = \sqrt[3]{k + 4} \)[/tex] step-by-step.

1. Start with the given equation:
[tex]\[ 7 = \sqrt[3]{k + 4} \][/tex]

2. To remove the cube root, cube both sides of the equation:
[tex]\[ 7^3 = (\sqrt[3]{k + 4})^3 \][/tex]

3. Simplify the right side of the equation:
[tex]\[ 7^3 = k + 4 \][/tex]

4. Calculate the cube of 7:
[tex]\[ 7^3 = 343 \][/tex]

5. Now we have:
[tex]\[ 343 = k + 4 \][/tex]

6. To solve for [tex]\( k \)[/tex], subtract 4 from both sides of the equation:
[tex]\[ 343 - 4 = k \][/tex]

7. Simplify the left side of the equation:
[tex]\[ 339 = k \][/tex]

Therefore, the value of [tex]\( k \)[/tex] is [tex]\( 339 \)[/tex].

The transformation and calculations give us:
[tex]\[ \boxed{k = 339} \][/tex]