34. A piston whose diameter is 1.4 m is pushed into a cylinder containing a fluid. If the pressure produced in the cylinder is [tex]$4.0 \times 10^5 \, \text{Pa}$[/tex], calculate the force applied on the piston.



Answer :

To solve this problem, we need to calculate the force applied on the piston given its diameter and the pressure in the cylinder. Let's go through the steps:

1. Given Values:
- Diameter of the piston: [tex]\( d = 1.4 \)[/tex] meters.
- Pressure in the cylinder: [tex]\( P = 4.0 \times 10^5 \)[/tex] Pascals (Pa).

2. Calculate the Radius:
The radius [tex]\( r \)[/tex] is half of the diameter. So,
[tex]\[ r = \frac{d}{2} = \frac{1.4 \, \text{m}}{2} = 0.7 \, \text{m} \][/tex]

3. Calculate the Area of the Piston:
The piston is circular, so the area [tex]\( A \)[/tex] can be calculated using the formula for the area of a circle:
[tex]\[ A = \pi r^2 \][/tex]
Substituting the radius:
[tex]\[ A = \pi (0.7 \, \text{m})^2 \][/tex]
Numerical calculation yields:
[tex]\[ A \approx 1.539 \, \text{m}^2 \][/tex]

4. Calculate the Force:
Using the formula [tex]\( \text{Force} = \text{Pressure} \times \text{Area} \)[/tex]:
[tex]\[ F = P \times A \][/tex]
Substituting the pressure and the area:
[tex]\[ F = 4.0 \times 10^5 \, \text{Pa} \times 1.539 \, \text{m}^2 \][/tex]
Numerical calculation yields:
[tex]\[ F \approx 615752 \, \text{N} \][/tex]

Thus, the force applied on the piston is approximately 615752.16 Newtons (N).