A science teacher wrote the table of values below.

Amount of Hydrogen vs. pH

\begin{tabular}{|c|c|}
\hline
\begin{tabular}{c}
Amount of Hydrogen, [tex]$x$[/tex] \\
(in moles per liter)
\end{tabular} & [tex]$pH, f(x)$[/tex] \\
\hline
[tex]$\frac{1}{10}$[/tex] & 1 \\
\hline
[tex]$\frac{1}{100}$[/tex] & 2 \\
\hline
[tex]$\frac{1}{1,000}$[/tex] & 3 \\
\hline
[tex]$\frac{1}{10,000}$[/tex] & 4 \\
\hline
[tex]$\frac{1}{100,000}$[/tex] & 5 \\
\hline
\end{tabular}



Answer :

To solve this problem, let's first understand the relationship between the amount of hydrogen (in moles per liter, denoted as [tex]\(x\)[/tex]) and the pH of the solution.

From the information provided in the table, we have the following pairs of values for the amount of hydrogen ([tex]\(x\)[/tex]) and the pH ([tex]\(f(x)\)[/tex]):

[tex]\[ \begin{array}{|c|c|} \hline \text{Amount of Hydrogen, } x \text{ (in moles per liter)} & \text{pH, } f(x) \\ \hline \frac{1}{10} & 1 \\ \frac{1}{100} & 2 \\ \frac{1}{1000} & 3 \\ \frac{1}{10000} & 4 \\ \frac{1}{100000} & 5 \\ \hline \end{array} \][/tex]

To identify the relationship between [tex]\(x\)[/tex] and [tex]\(f(x)\)[/tex], we notice a pattern. The pH value is derived from the amount of hydrogen [tex]\(x\)[/tex] by using the following formula:

[tex]\[ \text{pH} = -\log_{10}(\text{amount of hydrogen in moles per liter}) \][/tex]

Let's apply this formula to each entry in the table:

1. For [tex]\(x = \frac{1}{10} = 10^{-1}\)[/tex]:

[tex]\[ \text{pH} = -\log_{10}\left(10^{-1}\right) = -(-1) = 1 \][/tex]

2. For [tex]\(x = \frac{1}{100} = 10^{-2}\)[/tex]:

[tex]\[ \text{pH} = -\log_{10}\left(10^{-2}\right) = -(-2) = 2 \][/tex]

3. For [tex]\(x = \frac{1}{1000} = 10^{-3}\)[/tex]:

[tex]\[ \text{pH} = -\log_{10}\left(10^{-3}\right) = -(-3) = 3 \][/tex]

4. For [tex]\(x = \frac{1}{10000} = 10^{-4}\)[/tex]:

[tex]\[ \text{pH} = -\log_{10}\left(10^{-4}\right) = -(-4) = 4 \][/tex]

5. For [tex]\(x = \frac{1}{100000} = 10^{-5}\)[/tex]:

[tex]\[ \text{pH} = -\log_{10}\left(10^{-5}\right) = -(-5) = 5 \][/tex]

From these calculations, we have verified that for each given amount of hydrogen [tex]\(x\)[/tex], the corresponding pH is indeed [tex]\(-\log_{10}(x)\)[/tex]. Therefore, the general relationship between the pH and the amount of hydrogen (in moles per liter) can be written as:

[tex]\[ \text{pH} = -\log_{10}(\text{amount of hydrogen in moles per liter}) \][/tex]

This relationship is consistent with the values provided in the table.