A spring with a spring constant value of [tex]$2500 \frac{ N }{ m }$[/tex] is compressed 32 cm. A [tex]$1.5 \, \text{kg}$[/tex] rock is placed on top of it, then the spring is released. Approximately how high will the rock rise?

A. 9 m
B. 17 m
C. 27 m
D. 85 m



Answer :

To solve the problem, we need to determine how high the rock will rise when it's launched by the spring. Here's a detailed, step-by-step solution:

1. Convert the compression distance to meters:
The given compression distance is 32 centimeters. Converting this to meters:
[tex]\[ 32 \text{ cm} = 0.32 \text{ m} \][/tex]

2. Calculate the potential energy stored in the spring (Elastic Potential Energy):
The potential energy [tex]\( E \)[/tex] stored in a compressed or stretched spring can be calculated using Hooke’s law:
[tex]\[ E = \frac{1}{2} k x^2 \][/tex]
where:
- [tex]\( k \)[/tex] is the spring constant (2500 [tex]\( \frac{N}{m} \)[/tex])
- [tex]\( x \)[/tex] is the compression distance (0.32 m)

Substituting the given values:
[tex]\[ E = \frac{1}{2} \times 2500 \times (0.32)^2 \][/tex]

Performing the multiplication:
[tex]\[ E = \frac{1}{2} \times 2500 \times 0.1024 \][/tex]
[tex]\[ E = 1250 \times 0.1024 \][/tex]
[tex]\[ E = 128 \, \text{Joules} \][/tex]

3. Calculate the height the rock will rise (Gravitational Potential Energy):
The gravitational potential energy [tex]\( E \)[/tex] at a height [tex]\( h \)[/tex] is given by:
[tex]\[ E = mgh \][/tex]
where:
- [tex]\( m \)[/tex] is the mass of the rock (1.5 kg)
- [tex]\( g \)[/tex] is the acceleration due to gravity (9.81 [tex]\( \frac{m}{s^2} \)[/tex])
- [tex]\( h \)[/tex] is the height the rock will rise

We set the potential energy stored in the spring equal to the gravitational potential energy:
[tex]\[ \frac{1}{2} k x^2 = mgh \][/tex]
[tex]\[ 128 = 1.5 \times 9.81 \times h \][/tex]

Solving for [tex]\( h \)[/tex]:
[tex]\[ h = \frac{128}{1.5 \times 9.81} \][/tex]
[tex]\[ h = \frac{128}{14.715} \][/tex]
[tex]\[ h \approx 8.70 \text{ m} \][/tex]

Therefore, the height that the rock will rise is approximately 8.70 meters. Thus, the closest given answer choice is 9 m.