Answer :
To find the slope of the line that passes through the points [tex]\((-1, -4)\)[/tex] and [tex]\((-2, 1)\)[/tex], follow these steps:
1. Identify the coordinates of the two points. Let's denote [tex]\((-1, -4)\)[/tex] as [tex]\((x_1, y_1)\)[/tex] and [tex]\((-2, 1)\)[/tex] as [tex]\((x_2, y_2)\)[/tex].
- [tex]\(x_1 = -1\)[/tex]
- [tex]\(y_1 = -4\)[/tex]
- [tex]\(x_2 = -2\)[/tex]
- [tex]\(y_2 = 1\)[/tex]
2. Calculate the change in [tex]\(y\)[/tex], known as [tex]\(\Delta y\)[/tex]:
[tex]\[ \Delta y = y_2 - y_1 \][/tex]
Substituting the given values:
[tex]\[ \Delta y = 1 - (-4) = 1 + 4 = 5 \][/tex]
3. Calculate the change in [tex]\(x\)[/tex], known as [tex]\(\Delta x\)[/tex]:
[tex]\[ \Delta x = x_2 - x_1 \][/tex]
Substituting the given values:
[tex]\[ \Delta x = -2 - (-1) = -2 + 1 = -1 \][/tex]
4. Check if the line is vertical. A line is vertical if [tex]\(\Delta x = 0\)[/tex]. Here, [tex]\(\Delta x \neq 0\)[/tex], so the slope is defined.
5. Compute the slope [tex]\(m\)[/tex] using the formula:
[tex]\[ m = \frac{\Delta y}{\Delta x} \][/tex]
Substituting the calculated values:
[tex]\[ m = \frac{5}{-1} = -5 \][/tex]
So, the slope of the line that passes through the points [tex]\((-1, -4)\)[/tex] and [tex]\((-2, 1)\)[/tex] is:
[tex]\[ \boxed{-5} \][/tex]
1. Identify the coordinates of the two points. Let's denote [tex]\((-1, -4)\)[/tex] as [tex]\((x_1, y_1)\)[/tex] and [tex]\((-2, 1)\)[/tex] as [tex]\((x_2, y_2)\)[/tex].
- [tex]\(x_1 = -1\)[/tex]
- [tex]\(y_1 = -4\)[/tex]
- [tex]\(x_2 = -2\)[/tex]
- [tex]\(y_2 = 1\)[/tex]
2. Calculate the change in [tex]\(y\)[/tex], known as [tex]\(\Delta y\)[/tex]:
[tex]\[ \Delta y = y_2 - y_1 \][/tex]
Substituting the given values:
[tex]\[ \Delta y = 1 - (-4) = 1 + 4 = 5 \][/tex]
3. Calculate the change in [tex]\(x\)[/tex], known as [tex]\(\Delta x\)[/tex]:
[tex]\[ \Delta x = x_2 - x_1 \][/tex]
Substituting the given values:
[tex]\[ \Delta x = -2 - (-1) = -2 + 1 = -1 \][/tex]
4. Check if the line is vertical. A line is vertical if [tex]\(\Delta x = 0\)[/tex]. Here, [tex]\(\Delta x \neq 0\)[/tex], so the slope is defined.
5. Compute the slope [tex]\(m\)[/tex] using the formula:
[tex]\[ m = \frac{\Delta y}{\Delta x} \][/tex]
Substituting the calculated values:
[tex]\[ m = \frac{5}{-1} = -5 \][/tex]
So, the slope of the line that passes through the points [tex]\((-1, -4)\)[/tex] and [tex]\((-2, 1)\)[/tex] is:
[tex]\[ \boxed{-5} \][/tex]