Answer :
Sure, let's solve the system of equations using the elimination method. The system we have is:
[tex]\[ \begin{cases} x - 4y = -13 \quad \text{(Equation 1)} \\ 2x + 4y = 10 \quad \text{(Equation 2)} \end{cases} \][/tex]
### Step 1: Add the two equations to eliminate [tex]\( y \)[/tex]
First, we add Equation 1 and Equation 2 together:
[tex]\[ (x - 4y) + (2x + 4y) = -13 + 10 \][/tex]
Simplify the left-hand side:
[tex]\[ x + 2x - 4y + 4y = -13 + 10 \][/tex]
The [tex]\( y \)[/tex] terms cancel each other out:
[tex]\[ 3x = -3 \][/tex]
### Step 2: Solve for [tex]\( x \)[/tex]
Now, solve the equation [tex]\( 3x = -3 \)[/tex] for [tex]\( x \)[/tex]:
[tex]\[ x = \frac{-3}{3} = -1 \][/tex]
### Step 3: Substitute [tex]\( x = -1 \)[/tex] back into one of the original equations to solve for [tex]\( y \)[/tex]
We can substitute [tex]\( x = -1 \)[/tex] into Equation 1:
[tex]\[ x - 4y = -13 \][/tex]
Substitute [tex]\( x \)[/tex] with [tex]\(-1\)[/tex]:
[tex]\[ -1 - 4y = -13 \][/tex]
Solve for [tex]\( y \)[/tex]:
[tex]\[ -4y = -13 + 1 \][/tex]
[tex]\[ -4y = -12 \][/tex]
[tex]\[ y = \frac{-12}{-4} = 3 \][/tex]
### Step 4: Write the solution as an ordered pair
The solution to the system of equations is:
[tex]\[ (x, y) = (-1, 3) \][/tex]
Hence, the solution of the system is [tex]\((-1, 3)\)[/tex].
[tex]\[ \begin{cases} x - 4y = -13 \quad \text{(Equation 1)} \\ 2x + 4y = 10 \quad \text{(Equation 2)} \end{cases} \][/tex]
### Step 1: Add the two equations to eliminate [tex]\( y \)[/tex]
First, we add Equation 1 and Equation 2 together:
[tex]\[ (x - 4y) + (2x + 4y) = -13 + 10 \][/tex]
Simplify the left-hand side:
[tex]\[ x + 2x - 4y + 4y = -13 + 10 \][/tex]
The [tex]\( y \)[/tex] terms cancel each other out:
[tex]\[ 3x = -3 \][/tex]
### Step 2: Solve for [tex]\( x \)[/tex]
Now, solve the equation [tex]\( 3x = -3 \)[/tex] for [tex]\( x \)[/tex]:
[tex]\[ x = \frac{-3}{3} = -1 \][/tex]
### Step 3: Substitute [tex]\( x = -1 \)[/tex] back into one of the original equations to solve for [tex]\( y \)[/tex]
We can substitute [tex]\( x = -1 \)[/tex] into Equation 1:
[tex]\[ x - 4y = -13 \][/tex]
Substitute [tex]\( x \)[/tex] with [tex]\(-1\)[/tex]:
[tex]\[ -1 - 4y = -13 \][/tex]
Solve for [tex]\( y \)[/tex]:
[tex]\[ -4y = -13 + 1 \][/tex]
[tex]\[ -4y = -12 \][/tex]
[tex]\[ y = \frac{-12}{-4} = 3 \][/tex]
### Step 4: Write the solution as an ordered pair
The solution to the system of equations is:
[tex]\[ (x, y) = (-1, 3) \][/tex]
Hence, the solution of the system is [tex]\((-1, 3)\)[/tex].