Solve for [tex]\( x \)[/tex].

[tex]\[ 3x = 6x - 2 \][/tex]



Format the following question or task so that it is easier to read.
Fix any grammar or spelling errors.
Remove phrases that are not part of the question.
Do not remove or change LaTeX formatting.
Do not change or remove [tex] [/tex] tags.
If the question is nonsense, rewrite it so that it makes sense.
-----
The weekly salaries of a sample of employees at the local bank are given in the table below.
\begin{tabular}{|c|c|}
\hline Employee & Weekly Salary \\
\hline Anja & [tex]$\$[/tex] 245[tex]$ \\
\hline Raz & $[/tex]\[tex]$ 300$[/tex] \\
\hline Natalie & [tex]$\$[/tex] 325[tex]$ \\
\hline Mic & $[/tex]\[tex]$ 465$[/tex] \\
\hline Paul & [tex]$\$[/tex] 100$ \\
\hline
\end{tabular}

What is the variance for the data?

[tex]\[ s^2=\frac{\left(x_1-\bar{x}\right)^2+\left(x_2-\bar{x}\right)^2+\ldots+\left(x_n-\bar{x}\right)^2}{n-1} \][/tex]

A. 118.35

B. 132.32



Answer :

To calculate the variance of the weekly salaries of the sample of employees at the local bank, follow these steps:

1. List the given weekly salaries:
- Anja: [tex]$245 - Raz: $[/tex]300
- Natalie: [tex]$325 - Mic: $[/tex]465
- Paul: $100

2. Calculate the mean (average) of these salaries:
Mean, [tex]\(\bar{x}\)[/tex], is given by:
[tex]\[ \bar{x} = \frac{\sum_{i=1}^{n} x_i}{n} \][/tex]
where [tex]\( x_i \)[/tex] are the salaries and [tex]\( n \)[/tex] is the number of employees.

[tex]\[ \bar{x} = \frac{245 + 300 + 325 + 465 + 100}{5} = \frac{1435}{5} = 287 \][/tex]

3. Calculate the squared differences from the mean for each salary:
- For Anja: [tex]\((245 - 287)^2 = (-42)^2 = 1764\)[/tex]
- For Raz: [tex]\((300 - 287)^2 = (13)^2 = 169\)[/tex]
- For Natalie: [tex]\((325 - 287)^2 = (38)^2 = 1444\)[/tex]
- For Mic: [tex]\((465 - 287)^2 = (178)^2 = 31684\)[/tex]
- For Paul: [tex]\((100 - 287)^2 = (-187)^2 = 34969\)[/tex]

4. Sum these squared differences:
[tex]\[ 1764 + 169 + 1444 + 31684 + 34969 = 70030 \][/tex]

5. Calculate the variance using the formula:
[tex]\[ s^2 = \frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1} = \frac{70030}{5-1} = \frac{70030}{4} = 17507.5 \][/tex]

Therefore, the variance of the weekly salaries is [tex]\(17507.5\)[/tex].