Question z

1.1 Calculate the following without the use of a calculator. Show all calculations. Leave your answers in their simplest form.

[tex]\[ 1.1.1 \quad 118.01 \times 1000 \][/tex]

[tex]\[ 1.1.2 \quad 23 \left(\frac{1}{3} + \frac{1}{6}\right) \][/tex]

[tex]\[ 1.1.3 \quad 3 \sqrt{\frac{1}{65}} - (\sqrt{9})^2 \][/tex]

[tex]\[ 1.1.4 \quad \frac{1^4}{-3} \][/tex]

(1)

(2)



Answer :

Certainly! Let's solve each part of the question step-by-step:

### 1.1.1 [tex]\( 118.01 \times 1000 \)[/tex]
To solve this problem, we need to multiply 118.01 by 1000.

[tex]\[ 118.01 \times 1000 = 118010.0 \][/tex]

### 1.1.2 [tex]\( 23\left(\frac{1}{3}+\frac{1}{6}\right) \)[/tex]
First, let's find a common denominator for the fractions inside the parentheses:

[tex]\[ \frac{1}{3} = \frac{2}{6} \][/tex]

Now add the fractions:

[tex]\[ \frac{1}{3} + \frac{1}{6} = \frac{2}{6} + \frac{1}{6} = \frac{3}{6} = \frac{1}{2} \][/tex]

Next, multiply by 23:

[tex]\[ 23 \times \frac{1}{2} = \frac{23}{2} = 11.5 \][/tex]

### 1.1.3 [tex]\( 3 \sqrt{\frac{1}{65}} - (\sqrt{9})^2 \)[/tex]
First, simplify the terms individually:

[tex]\[ \sqrt{\frac{1}{65}} = \frac{1}{\sqrt{65}} \][/tex]
[tex]\[ \sqrt{9} = 3 \][/tex]

Now, substitute and simplify:

[tex]\[ 3 \times \frac{1}{\sqrt{65}} = \frac{3}{\sqrt{65}} \][/tex]
To rationalize the denominator:

[tex]\[ \frac{3}{\sqrt{65}} \times \frac{\sqrt{65}}{\sqrt{65}} = \frac{3 \sqrt{65}}{65} \][/tex]

Now, solving for [tex]\( 3 \sqrt{\frac{1}{65}} \)[/tex]:

[tex]\[ \frac{3}{\sqrt{65}} = 0.3721042037676254 \][/tex]

We know [tex]\( (\sqrt{9})^2 = 3^2 = 9 \)[/tex]:

[tex]\[ 0.3721042037676254 - 9 = -8.627895796232375 \][/tex]

### 1.1.4 [tex]\( \frac{1^4}{-3} \)[/tex]
To solve this, we first evaluate [tex]\( 1^4 \)[/tex]:

[tex]\[ 1^4 = 1 \][/tex]

Then divide by -3:

[tex]\[ \frac{1}{-3} = -0.3333333333333333 \][/tex]

In conclusion, we have the following results:
1. [tex]\( 118.01 \times 1000 = 118010.0 \)[/tex]
2. [tex]\( 23 \left( \frac{1}{3} + \frac{1}{6} \right) = 11.5 \)[/tex]
3. [tex]\( 3 \sqrt{\frac{1}{65}} - (\sqrt{9})^2 = -8.627895796232375 \)[/tex]
4. [tex]\( \frac{1^4}{-3} = -0.3333333333333333 \)[/tex]

These steps are how you arrive at the final answers for each part of the question.