Sure! Let's set up the given equation step-by-step to solve for [tex]\( x \)[/tex].
We start with the given equation:
[tex]\[ 6x + 3 = 29 \][/tex]
The goal is to isolate [tex]\( x \)[/tex]. Here are the steps we need to follow:
1. Subtract 3 from both sides:
[tex]\[ 6x + 3 - 3 = 29 - 3 \][/tex]
Simplifying both sides, we get:
[tex]\[ 6x = 26 \][/tex]
2. Divide both sides by 6:
[tex]\[ \frac{6x}{6} = \frac{26}{6} \][/tex]
Simplifying the left side, we get:
[tex]\[ x = \frac{26}{6} \][/tex]
3. Simplify the fraction:
[tex]\[ x = 4.333333333333333 \][/tex]
Therefore, the value of [tex]\( x \)[/tex] is approximately [tex]\( 4.3333 \)[/tex].
So, the solution for [tex]\( x \)[/tex] in the equation [tex]\( 6x + 3 = 29 \)[/tex] is [tex]\( \boxed{4.3333} \)[/tex].