Let [tex]$z = f(x, y) = x^2 + y^3$[/tex].

a) Use differentials to estimate [tex]$\Delta z$[/tex] for [tex]x = 5[/tex], [tex]y = 3[/tex], [tex]\Delta x = 0.01[/tex], and [tex]\Delta y = 0.03[/tex].
b) Find [tex][tex]$\Delta z$[/tex][/tex] by evaluating [tex]f(x + \Delta x, y + \Delta y) - f(x, y)$[/tex].

a) The estimated value is [tex]$\Delta z = 0.9100$[/tex] (Round to four decimal places as needed.)
b) The actual value is [tex]$\Delta z = 0.9182$[/tex] (Round to four decimal places as needed.)



Answer :

Sure! Let's go through the solution step-by-step.

Given the function [tex]\( z = f(x, y) = x^2 + y^3 \)[/tex], we need to solve two parts:

a) Use differentials to estimate [tex]\(\Delta z\)[/tex].
b) Find [tex]\(\Delta z\)[/tex] by evaluating [tex]\( f(x + \Delta x, y + \Delta y) - f(x, y) \)[/tex].

Let's start with part (a):

### Part (a)

1. Calculate the partial derivatives of [tex]\( f \)[/tex] with respect to [tex]\( x \)[/tex] and [tex]\( y \)[/tex]:
[tex]\[ \frac{\partial f}{\partial x} = \frac{\partial}{\partial x} (x^2 + y^3) = 2x \][/tex]
[tex]\[ \frac{\partial f}{\partial y} = \frac{\partial}{\partial y} (x^2 + y^3) = 3y^2 \][/tex]

2. Substitute [tex]\( x = 5 \)[/tex] and [tex]\( y = 3 \)[/tex] into the partial derivatives:
[tex]\[ \frac{\partial f}{\partial x} \bigg|_{(5, 3)} = 2 \times 5 = 10 \][/tex]
[tex]\[ \frac{\partial f}{\partial y} \bigg|_{(5, 3)} = 3 \times 3^2 = 3 \times 9 = 27 \][/tex]

3. Use differentials to estimate [tex]\(\Delta z\)[/tex]:
[tex]\[ \Delta z \approx \frac{\partial f}{\partial x} \Delta x + \frac{\partial f}{\partial y} \Delta y \][/tex]
[tex]\[ \Delta z \approx 10 \times 0.01 + 27 \times 0.03 \][/tex]
[tex]\[ \Delta z \approx 0.1 + 0.81 = 0.91 \][/tex]

So, the estimated value of [tex]\(\Delta z\)[/tex] is [tex]\(0.9100\)[/tex].

### Part (b)

1. Calculate [tex]\( f(x + \Delta x, y + \Delta y) \)[/tex]:
[tex]\[ f(x + \Delta x, y + \Delta y) = f(5 + 0.01, 3 + 0.03) = f(5.01, 3.03) \][/tex]
[tex]\[ f(5.01, 3.03) = (5.01)^2 + (3.03)^3 \][/tex]

2. Calculate [tex]\( f(x, y) \)[/tex]:
[tex]\[ f(5, 3) = 5^2 + 3^3 = 25 + 27 = 52 \][/tex]

3. Calculate the change [tex]\(\Delta z\)[/tex]:
[tex]\[ \Delta z = f(5.01, 3.03) - f(5, 3) \][/tex]

4. Compute the function value at the new point:
[tex]\[ (5.01)^2 = 25.1001 \][/tex]
[tex]\[ (3.03)^3 \approx 27.8181 \][/tex]
[tex]\[ f(5.01, 3.03) = 25.1001 + 27.8181 = 52.9182 \][/tex]

5. Calculate the actual [tex]\(\Delta z\)[/tex]:
[tex]\[ \Delta z = 52.9182 - 52 = 0.9182 \][/tex]

So, the actual value of [tex]\(\Delta z\)[/tex] is [tex]\(0.9182\)[/tex].

To summarize:
a) The estimated value is [tex]\(\Delta z = 0.9100\)[/tex]
b) The actual value is [tex]\(\Delta z = 0.9182\)[/tex]

These values are rounded to four decimal places as needed.