Format the following question or task so that it is easier to read.
Fix any grammar or spelling errors.
Remove phrases that are not part of the question.
Do not remove or change LaTeX formatting.
Do not change or remove [tex] [/tex] tags.
If the question is nonsense, rewrite it so that it makes sense.
-----
Simplify the following expression:

[tex]3d^2 n + 4 \times \sqrt{27 d^6 n} + 64 \cdot f^{12 y}[/tex]
-----



Answer :

Certainly! Let's break down the given expression step by step.

We start with the given mathematical expression:
[tex]\[ 3d^2n + f \cdot 4 \times \sqrt{27d^6n} + 64 \cdot f^{12y} \][/tex]

### Step 1: Simplify Each Term

#### Term 1: [tex]\( 3d^2n \)[/tex]

This term is already in its simplest form:
[tex]\[ 3d^2n \][/tex]

#### Term 2: [tex]\( f \cdot 4 \times \sqrt{27d^6n} \)[/tex]

Firstly, simplify inside the square root:
[tex]\[ \sqrt{27d^6n} \][/tex]
[tex]\[ = \sqrt{27d^6 \cdot n} \][/tex]

Notice that [tex]\( 27d^6 \)[/tex] can be further simplified because [tex]\( 27 = 3^3 \)[/tex]:
[tex]\[ = \sqrt{(3^3)d^6 \cdot n} \][/tex]
[tex]\[ = \sqrt{3^3 \cdot d^6 \cdot n} \][/tex]

Since [tex]\( 3^3 = 27 \)[/tex] and the square root of [tex]\( d^6 \)[/tex] is [tex]\( d^3 \)[/tex], we can rewrite:
[tex]\[ = \sqrt{27} \cdot \sqrt{d^6} \cdot \sqrt{n} \][/tex]
[tex]\[ = 3\sqrt{3} \cdot d^3 \cdot \sqrt{n} \][/tex]

We plug this back into the term:
[tex]\[ f \cdot 4 \times 3\sqrt{3} \cdot d^3 \cdot \sqrt{n} \][/tex]
[tex]\[ = f \cdot 12\sqrt{3} \cdot d^3 \cdot \sqrt{n} \][/tex]
[tex]\[ = 12\sqrt{3} \cdot f \cdot d^3 \cdot \sqrt{n} \][/tex]

#### Term 3: [tex]\( 64 \cdot f^{12y} \)[/tex]

This term is already in its simplest form:
[tex]\[ 64f^{12y} \][/tex]

### Step 2: Combine the Simplified Terms

Combining the three simplified terms, we obtain:
[tex]\[ 3d^2n + 12\sqrt{3}f\sqrt{d^6n} + 64f^{12y} \][/tex]

### Final Answer

Therefore, the detailed expression can be written as:
[tex]\[ 3d^2n + 12\sqrt{3}f\sqrt{d^6n} + 64f^{12y} \][/tex]

This is the simplified form of the given mathematical expression.