What is the equation for the translation of [tex]$x^2+y^2=25$[/tex] two units to the right and four units down?

A. [tex]$(x+2)^2+(y+4)^2=25$[/tex]

B. [tex][tex]$(x-2)^2+(y-4)^2=25$[/tex][/tex]

C. [tex]$(x-2)^2+(y+4)^2=25$[/tex]

D. [tex]$(x+2)^2+(y-4)^2=25$[/tex]



Answer :

Certainly! Let's solve the problem step-by-step.

We start with the original equation of the circle:
[tex]\[ x^2 + y^2 = 25 \][/tex]

This represents a circle centered at (0, 0) with a radius of 5.

Step 1: Translating the Circle to the Right

When we translate a circle to the right by a number of units, we modify the [tex]\(x\)[/tex]-coordinate by subtracting the translation distance from [tex]\(x\)[/tex]. Translating two units to the right involves modifying the [tex]\(x\)[/tex] term to [tex]\((x - 2)\)[/tex]:

[tex]\[ (x - 2)^2 + y^2 = 25 \][/tex]

Step 2: Translating the Circle Upward

When we translate a circle upward by a number of units, we modify the [tex]\(y\)[/tex]-coordinate by subtracting the translation distance from [tex]\(y\)[/tex]. Translating four units up involves modifying the [tex]\(y\)[/tex] term to [tex]\((y - 4)\)[/tex]:

[tex]\[ (x - 2)^2 + (y - 4)^2 = 25 \][/tex]

Therefore, the new equation for the translated circle is:
[tex]\[ (x-2)^2 + (y-4)^2 = 25 \][/tex]

So, the correct answer is:
[tex]\[ \boxed{(x-2)^2+(y-4)^2=25} \][/tex]