What is the domain of the function [tex] y = \sqrt[3]{x-1} [/tex]?

A. [tex] -\infty \ \textless \ x \ \textless \ \infty [/tex]
B. [tex] -1 \ \textless \ x \ \textless \ \infty [/tex]
C. [tex] 0 \leq x \ \textless \ \infty [/tex]
D. [tex] 1 \leq x \ \textless \ \infty [/tex]



Answer :

To determine the domain of the function [tex]\( y = \sqrt[3]{x - 1} \)[/tex], we need to consider the values of [tex]\( x \)[/tex] for which the function is defined and yields real numbers.

The cube root function, [tex]\( \sqrt[3]{u} \)[/tex], is defined for all real numbers [tex]\( u \)[/tex]. This is because the cube root of any real number is also a real number. There are no restrictions or limitations on [tex]\( u \)[/tex] since the cube root function can handle negative numbers, zero, and positive numbers without any issues.

In our function [tex]\( y = \sqrt[3]{x - 1} \)[/tex], the expression inside the cube root is [tex]\( x - 1 \)[/tex]. Since the cube root function can accept any real number as input, [tex]\( x - 1 \)[/tex] can also be any real number.

To put it succinctly:
- [tex]\( x - 1 \)[/tex] can be any real number.
- Therefore, [tex]\( x \)[/tex] can be any real number.

Thus, the domain of the function [tex]\( y = \sqrt[3]{x - 1} \)[/tex] is all real numbers, represented as:

[tex]\[ -\infty < x < \infty \][/tex]

Therefore, the correct answer is:
[tex]\[ \boxed{-\infty < x < \infty} \][/tex]