Answer :
Certainly! Let's solve the given equation step-by-step.
The given equation is:
[tex]\[ \frac{1}{3^{5x - 2}} = 81^{x + 4} \][/tex]
### Step 1: Express 81 as a power of 3
We know that [tex]\(81\)[/tex] can be written as [tex]\(3^4\)[/tex]. Therefore,
[tex]\[ 81 = 3^4 \][/tex]
Thus, the equation becomes:
[tex]\[ \frac{1}{3^{5x - 2}} = (3^4)^{x + 4} \][/tex]
### Step 2: Simplify the right-hand side
According to the laws of exponents, [tex]\((a^m)^n = a^{m \cdot n}\)[/tex]. Therefore,
[tex]\[ (3^4)^{x + 4} = 3^{4(x + 4)} \][/tex]
Simplify further:
[tex]\[ 3^{4(x + 4)} = 3^{4x + 16} \][/tex]
So now the equation is:
[tex]\[ \frac{1}{3^{5x - 2}} = 3^{4x + 16} \][/tex]
### Step 3: Rewrite the left-hand side
The left-hand side can be rewritten using the property of exponents [tex]\( \frac{1}{a^m} = a^{-m} \)[/tex]:
[tex]\[ \frac{1}{3^{5x - 2}} = 3^{-(5x - 2)} \][/tex]
### Step 4: Set the exponents equal
Since the bases are the same (both are [tex]\(3\)[/tex]), we can equate the exponents:
[tex]\[ -(5x - 2) = 4x + 16 \][/tex]
Simplify the equation:
[tex]\[ -5x + 2 = 4x + 16 \][/tex]
Combine like terms:
[tex]\[ -5x - 4x = 16 - 2 \][/tex]
[tex]\[ -9x = 14 \][/tex]
### Step 5: Solve for [tex]\(x\)[/tex]
Divide both sides by [tex]\(-9\)[/tex]:
[tex]\[ x = \frac{14}{-9} \][/tex]
Simplify the fraction:
[tex]\[ x = -\frac{14}{9} \][/tex]
Or as a decimal:
[tex]\[ x = -1.5555555555555556 \][/tex]
This is the solution to the equation.
The given equation is:
[tex]\[ \frac{1}{3^{5x - 2}} = 81^{x + 4} \][/tex]
### Step 1: Express 81 as a power of 3
We know that [tex]\(81\)[/tex] can be written as [tex]\(3^4\)[/tex]. Therefore,
[tex]\[ 81 = 3^4 \][/tex]
Thus, the equation becomes:
[tex]\[ \frac{1}{3^{5x - 2}} = (3^4)^{x + 4} \][/tex]
### Step 2: Simplify the right-hand side
According to the laws of exponents, [tex]\((a^m)^n = a^{m \cdot n}\)[/tex]. Therefore,
[tex]\[ (3^4)^{x + 4} = 3^{4(x + 4)} \][/tex]
Simplify further:
[tex]\[ 3^{4(x + 4)} = 3^{4x + 16} \][/tex]
So now the equation is:
[tex]\[ \frac{1}{3^{5x - 2}} = 3^{4x + 16} \][/tex]
### Step 3: Rewrite the left-hand side
The left-hand side can be rewritten using the property of exponents [tex]\( \frac{1}{a^m} = a^{-m} \)[/tex]:
[tex]\[ \frac{1}{3^{5x - 2}} = 3^{-(5x - 2)} \][/tex]
### Step 4: Set the exponents equal
Since the bases are the same (both are [tex]\(3\)[/tex]), we can equate the exponents:
[tex]\[ -(5x - 2) = 4x + 16 \][/tex]
Simplify the equation:
[tex]\[ -5x + 2 = 4x + 16 \][/tex]
Combine like terms:
[tex]\[ -5x - 4x = 16 - 2 \][/tex]
[tex]\[ -9x = 14 \][/tex]
### Step 5: Solve for [tex]\(x\)[/tex]
Divide both sides by [tex]\(-9\)[/tex]:
[tex]\[ x = \frac{14}{-9} \][/tex]
Simplify the fraction:
[tex]\[ x = -\frac{14}{9} \][/tex]
Or as a decimal:
[tex]\[ x = -1.5555555555555556 \][/tex]
This is the solution to the equation.
Answer:
[tex]x = -\dfrac{14}{9}[/tex]
Step-by-step explanation:
To solve [tex]\dfrac{1}{3^{5x-2}} = 81^{x+4}[/tex]
1. Rewrite 81 as [tex]3^4:[/tex]
[tex]81^{x+4} = (3^4)^{x+4} = 3^{4(x+4)}[/tex]
2. Simplify:
[tex]3^{4(x+4)} = 3^{4x + 16}[/tex]
3. Compare exponents:
[tex]\dfrac{1}{3^{5x-2}} = 3^{-(5x-2)}\\\\ 3^{-(5x-2)} = 3^{4x + 16}\\\\ -(5x - 2) = 4x + 16\\\\ -5x + 2 = 4x + 16\\\\ -14 = 9x[/tex]
[tex]x = -\dfrac{14}{9}[/tex]