Answer :
To evaluate the expression [tex]\( 4x + \frac{y}{2} \)[/tex] we should consider the following steps:
1. Identify the Variables: The expression consists of two terms which are dependent on variables [tex]\( x \)[/tex] and [tex]\( y \)[/tex]. Ensure you note these variables.
2. Multiplication and Division:
- The first term is [tex]\( 4x \)[/tex]. This means the variable [tex]\( x \)[/tex] is multiplied by 4.
- The second term is [tex]\(\frac{y}{2}\)[/tex], which means the variable [tex]\( y \)[/tex] is divided by 2.
3. Substitute Values (if provided): If specific values for [tex]\( x \)[/tex] and [tex]\( y \)[/tex] are given, substitute those into the expression. For instance, if [tex]\( x = a \)[/tex] and [tex]\( y = b \)[/tex],
[tex]\[ 4a + \frac{b}{2} \][/tex]
4. Simplify the Expression (if possible):
- For the term [tex]\(4a\)[/tex], simply multiply 4 by the value of [tex]\(a\)[/tex].
- For the term [tex]\(\frac{b}{2}\)[/tex], divide the value of [tex]\(b\)[/tex] by 2.
- Add the results from the two operations together to get the final value.
Let’s consider an example with some hypothetical values:
Suppose [tex]\( x = 3 \)[/tex] and [tex]\( y = 8 \)[/tex],
[tex]\[ 4x + \frac{y}{2} \][/tex]
First, substitute the values into the expression:
[tex]\[ 4 \cdot 3 + \frac{8}{2} \][/tex]
Next, perform the multiplication and division:
[tex]\[ 12 + 4 \][/tex]
Finally, add the two results:
[tex]\[ 16 \][/tex]
Thus, the value of the expression [tex]\( 4x + \frac{y}{2} \)[/tex] when [tex]\( x = 3 \)[/tex] and [tex]\( y = 8 \)[/tex] is 16.
If no specific values are given, then the expression remains in its general form:
[tex]\[ 4x + \frac{y}{2} \][/tex]
This general expression can be used to calculate the value once specific values for [tex]\( x \)[/tex] and [tex]\( y \)[/tex] are known.
1. Identify the Variables: The expression consists of two terms which are dependent on variables [tex]\( x \)[/tex] and [tex]\( y \)[/tex]. Ensure you note these variables.
2. Multiplication and Division:
- The first term is [tex]\( 4x \)[/tex]. This means the variable [tex]\( x \)[/tex] is multiplied by 4.
- The second term is [tex]\(\frac{y}{2}\)[/tex], which means the variable [tex]\( y \)[/tex] is divided by 2.
3. Substitute Values (if provided): If specific values for [tex]\( x \)[/tex] and [tex]\( y \)[/tex] are given, substitute those into the expression. For instance, if [tex]\( x = a \)[/tex] and [tex]\( y = b \)[/tex],
[tex]\[ 4a + \frac{b}{2} \][/tex]
4. Simplify the Expression (if possible):
- For the term [tex]\(4a\)[/tex], simply multiply 4 by the value of [tex]\(a\)[/tex].
- For the term [tex]\(\frac{b}{2}\)[/tex], divide the value of [tex]\(b\)[/tex] by 2.
- Add the results from the two operations together to get the final value.
Let’s consider an example with some hypothetical values:
Suppose [tex]\( x = 3 \)[/tex] and [tex]\( y = 8 \)[/tex],
[tex]\[ 4x + \frac{y}{2} \][/tex]
First, substitute the values into the expression:
[tex]\[ 4 \cdot 3 + \frac{8}{2} \][/tex]
Next, perform the multiplication and division:
[tex]\[ 12 + 4 \][/tex]
Finally, add the two results:
[tex]\[ 16 \][/tex]
Thus, the value of the expression [tex]\( 4x + \frac{y}{2} \)[/tex] when [tex]\( x = 3 \)[/tex] and [tex]\( y = 8 \)[/tex] is 16.
If no specific values are given, then the expression remains in its general form:
[tex]\[ 4x + \frac{y}{2} \][/tex]
This general expression can be used to calculate the value once specific values for [tex]\( x \)[/tex] and [tex]\( y \)[/tex] are known.