Answer :
Of course! Let's solve the given expression step-by-step:
[tex]\[ 7 + 2(3 + 2)^3 + 3\left(4^2 - 20\right) - 8\left(3^2 + 2^3\right) + 2 \][/tex]
First, we will break down and calculate each term separately.
1. First term:
[tex]\[ 7 \][/tex]
This term remains as it is.
2. Second term:
[tex]\[ 2(3 + 2)^3 \][/tex]
- First, solve the expression inside the parentheses:
[tex]\[ 3 + 2 = 5 \][/tex]
- Next, raise 5 to the power of 3:
[tex]\[ 5^3 = 125 \][/tex]
- Then, multiply by 2:
[tex]\[ 2 \times 125 = 250 \][/tex]
3. Third term:
[tex]\[ 3\left(4^2 - 20\right) \][/tex]
- First, calculate [tex]\(4^2\)[/tex]:
[tex]\[ 4^2 = 16 \][/tex]
- Next, subtract 20 from 16:
[tex]\[ 16 - 20 = -4 \][/tex]
- Then, multiply by 3:
[tex]\[ 3 \times -4 = -12 \][/tex]
4. Fourth term:
[tex]\[ -8\left(3^2 + 2^3\right) \][/tex]
- First, calculate [tex]\(3^2\)[/tex]:
[tex]\[ 3^2 = 9 \][/tex]
- Next, calculate [tex]\(2^3\)[/tex]:
[tex]\[ 2^3 = 8 \][/tex]
- Then, add the results:
[tex]\[ 9 + 8 = 17 \][/tex]
- Finally, multiply by -8:
[tex]\[ -8 \times 17 = -136 \][/tex]
5. Fifth term:
[tex]\[ 2 \][/tex]
This term remains as it is.
Now, let's sum up all the terms we have calculated:
[tex]\[ 7 + 250 + (-12) + (-136) + 2 \][/tex]
Combine the terms step-by-step:
[tex]\[ 7 + 250 = 257 \][/tex]
[tex]\[ 257 - 12 = 245 \][/tex]
[tex]\[ 245 - 136 = 109 \][/tex]
[tex]\[ 109 + 2 = 111 \][/tex]
So, the final result of the expression is:
[tex]\[ \boxed{111} \][/tex]
[tex]\[ 7 + 2(3 + 2)^3 + 3\left(4^2 - 20\right) - 8\left(3^2 + 2^3\right) + 2 \][/tex]
First, we will break down and calculate each term separately.
1. First term:
[tex]\[ 7 \][/tex]
This term remains as it is.
2. Second term:
[tex]\[ 2(3 + 2)^3 \][/tex]
- First, solve the expression inside the parentheses:
[tex]\[ 3 + 2 = 5 \][/tex]
- Next, raise 5 to the power of 3:
[tex]\[ 5^3 = 125 \][/tex]
- Then, multiply by 2:
[tex]\[ 2 \times 125 = 250 \][/tex]
3. Third term:
[tex]\[ 3\left(4^2 - 20\right) \][/tex]
- First, calculate [tex]\(4^2\)[/tex]:
[tex]\[ 4^2 = 16 \][/tex]
- Next, subtract 20 from 16:
[tex]\[ 16 - 20 = -4 \][/tex]
- Then, multiply by 3:
[tex]\[ 3 \times -4 = -12 \][/tex]
4. Fourth term:
[tex]\[ -8\left(3^2 + 2^3\right) \][/tex]
- First, calculate [tex]\(3^2\)[/tex]:
[tex]\[ 3^2 = 9 \][/tex]
- Next, calculate [tex]\(2^3\)[/tex]:
[tex]\[ 2^3 = 8 \][/tex]
- Then, add the results:
[tex]\[ 9 + 8 = 17 \][/tex]
- Finally, multiply by -8:
[tex]\[ -8 \times 17 = -136 \][/tex]
5. Fifth term:
[tex]\[ 2 \][/tex]
This term remains as it is.
Now, let's sum up all the terms we have calculated:
[tex]\[ 7 + 250 + (-12) + (-136) + 2 \][/tex]
Combine the terms step-by-step:
[tex]\[ 7 + 250 = 257 \][/tex]
[tex]\[ 257 - 12 = 245 \][/tex]
[tex]\[ 245 - 136 = 109 \][/tex]
[tex]\[ 109 + 2 = 111 \][/tex]
So, the final result of the expression is:
[tex]\[ \boxed{111} \][/tex]