8. Find the foci of the ellipse with the equation [tex]\frac{x^2}{144} + \frac{y^2}{100} = 1[/tex].

A. [tex]\((0, \pm 2 \sqrt{11})\)[/tex]
B. [tex]\((\pm 4 \sqrt{11}, 0)\)[/tex]
C. [tex]\((0, \pm 4 \sqrt{22})\)[/tex]
D. [tex]\((\pm 2 \sqrt{11}, 0)\)[/tex]



Answer :

To find the foci of the ellipse given by the equation [tex]\(\frac{x^2}{144}+\frac{y^2}{100}=1\)[/tex], we need to follow these steps:

1. Identify the values of [tex]\(a^2\)[/tex] and [tex]\(b^2\)[/tex] from the standard form of the ellipse equation [tex]\(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\)[/tex].

2. Compare the given equation [tex]\(\frac{x^2}{144} + \frac{y^2}{100} = 1\)[/tex] with the standard form to identify [tex]\(a^2\)[/tex] and [tex]\(b^2\)[/tex]:
- [tex]\(a^2 = 144\)[/tex]
- [tex]\(b^2 = 100\)[/tex]

3. Calculate [tex]\(a\)[/tex] and [tex]\(b\)[/tex]:
- [tex]\(a = \sqrt{144} = 12\)[/tex]
- [tex]\(b = \sqrt{100} = 10\)[/tex]

4. Determine the relationship between [tex]\(a\)[/tex] and [tex]\(b\)[/tex]:
- Since [tex]\(a > b\)[/tex], the major axis is along the x-axis, and the foci are at points [tex]\((\pm c, 0)\)[/tex].

5. Calculate [tex]\(c\)[/tex] using the formula [tex]\(c = \sqrt{a^2 - b^2}\)[/tex]:
- [tex]\(c = \sqrt{144 - 100} = \sqrt{44} \approx 6.6332495807108\)[/tex]

6. Hence, the foci of the ellipse are at:
- [tex]\((\pm c, 0) = (\pm 6.6332495807108, 0)\)[/tex]

Therefore, the foci of the ellipse are located at [tex]\((\pm 6.6332495807108, 0)\)[/tex]. Comparing this with the given options, the correct one is [tex]\(( \pm 2 \sqrt{11}, 0)\)[/tex], since [tex]\(2 \sqrt{11} = \sqrt{44} \approx 6.6332495807108\)[/tex].

Thus, the correct answer is:

[tex]\[ (\pm 2 \sqrt{11}, 0) \][/tex]