Use the table to identify [tex]\( f(2) \)[/tex].

[tex]\[
\begin{tabular}{|c|c|}
\hline
$x$ & $f(x)$ \\
\hline
-2 & 0 \\
\hline
-1 & 1 \\
\hline
0 & 2 \\
\hline
1 & -2 \\
\hline
2 & -1 \\
\hline
\end{tabular}
\][/tex]

a) -2
b) 0
c) 1
d) -1



Answer :

To determine [tex]\( f(2) \)[/tex] using the given table, we need to find the value of [tex]\( f(x) \)[/tex] that corresponds to [tex]\( x = 2 \)[/tex].

Let's examine the table step by step:

[tex]\[ \begin{array}{|c|c|} \hline x & f(x) \\ \hline -2 & 0 \\ \hline -1 & 1 \\ \hline 0 & 2 \\ \hline 1 & -2 \\ \hline 2 & -1 \\ \hline \end{array} \][/tex]

When [tex]\( x = 2 \)[/tex], the corresponding value of [tex]\( f(x) \)[/tex] is found in the row where [tex]\( x = 2 \)[/tex]. According to the table, when [tex]\( x = 2 \)[/tex], [tex]\( f(x) = -1 \)[/tex].

Thus, the value of [tex]\( f(2) \)[/tex] is [tex]\( -1 \)[/tex].

Therefore, the correct answer is:

d) -1