Type the correct answer in the box. Use numerals instead of words.

Use the properties of exponents to rewrite this expression. Then evaluate the rewritten expression for the given values of [tex]$m$[/tex] and [tex]$n$[/tex] to complete the statement.

[tex]\[ \left(7 m^{-2} m^2 n\right)^2 \][/tex]

When [tex]$m=-6$[/tex] and [tex]$n=2$[/tex], the value of the expression is [tex]$\square$[/tex]



Answer :

To solve the expression [tex]\(\left(7 m^{-2} m^2 n\right)^2\)[/tex] using the properties of exponents and the given values for [tex]\(m\)[/tex] and [tex]\(n\)[/tex], follow these steps:

1. Simplify the expression using exponent rules:
[tex]\[\left(7 m^{-2} m^2 n\right)^2\][/tex]

Notice that [tex]\(m^{-2} \cdot m^2\)[/tex] involves multiplying powers of the same base, [tex]\(m\)[/tex]:
[tex]\[m^{-2} \cdot m^2 = m^{(-2+2)} = m^0\][/tex]

Since any number raised to the power of zero is 1:
[tex]\[m^0 = 1\][/tex]

Therefore, the expression simplifies to:
[tex]\[\left(7 \cdot 1 \cdot n\right)^2 = (7n)^2\][/tex]

2. Substitute the given values of [tex]\(m\)[/tex] and [tex]\(n\)[/tex]:

Given [tex]\(m = -6\)[/tex] and [tex]\(n = 2\)[/tex], directly substitute [tex]\(n\)[/tex] in the simplified expression:
[tex]\[(7 \cdot 2)^2\][/tex]

3. Calculate the final value:

First, multiply within the parentheses:
[tex]\[7 \cdot 2 = 14\][/tex]

Then, square the result:
[tex]\[14^2 = 196\][/tex]

Therefore, when [tex]\(m = -6\)[/tex] and [tex]\(n = 2\)[/tex], the value of the expression is [tex]\(196\)[/tex].