Use the table to identify [tex]\( x \)[/tex] if [tex]\( f(x) = -2 \)[/tex].

[tex]\[
\begin{tabular}{|c|c|}
\hline
$x$ & $f(x)$ \\
\hline
-2 & 0 \\
\hline
-1 & 1 \\
\hline
0 & 2 \\
\hline
1 & -2 \\
\hline
2 & -1 \\
\hline
\end{tabular}
\][/tex]

a) -2

b) 1

c) 0

d) -1



Answer :

To identify the value of [tex]\( x \)[/tex] such that [tex]\( f(x) = -2 \)[/tex], we need to examine the table and find the row where the function [tex]\( f(x) \)[/tex] equals [tex]\(-2\)[/tex].

The table values are:

[tex]\[ \begin{array}{|c|c|} \hline x & f(x) \\ \hline -2 & 0 \\ \hline -1 & 1 \\ \hline 0 & 2 \\ \hline 1 & -2 \\ \hline 2 & -1 \\ \hline \end{array} \][/tex]

We will check each row one by one to see where [tex]\( f(x) \)[/tex] is equal to [tex]\(-2\)[/tex]:

1. For [tex]\( x = -2 \)[/tex], [tex]\( f(x) = 0 \)[/tex]
2. For [tex]\( x = -1 \)[/tex], [tex]\( f(x) = 1 \)[/tex]
3. For [tex]\( x = 0 \)[/tex], [tex]\( f(x) = 2 \)[/tex]
4. For [tex]\( x = 1 \)[/tex], [tex]\( f(x) = -2 \)[/tex]
5. For [tex]\( x = 2 \)[/tex], [tex]\( f(x) = -1 \)[/tex]

From the table, we see that when [tex]\( x = 1 \)[/tex], the value of [tex]\( f(x) \)[/tex] is [tex]\(-2\)[/tex].

Therefore, the value of [tex]\( x \)[/tex] such that [tex]\( f(x) = -2 \)[/tex] is:

[tex]\[ \boxed{1} \][/tex]

So the correct answer is b) 1.