Solve for [tex]\( x \)[/tex].

[tex]\[ 3x = 6x - 2 \][/tex]

---

Format the following question or task so that it is easier to read.
Fix any grammar or spelling errors.
Remove phrases that are not part of the question.
Do not remove or change LaTeX formatting.
Do not change or remove [tex] [/tex] tags.
If the question is nonsense, rewrite it so that it makes sense.
-----
14. If [tex]$x + y = 10$[/tex] and [tex]$\frac{1}{x} + \frac{1}{y} = \frac{5}{12}$[/tex], then the value of [tex]$x - y$[/tex] is:
-----

Response:
If [tex]\( x + y = 10 \)[/tex] and [tex]\(\frac{1}{x} + \frac{1}{y} = \frac{5}{12} \)[/tex], then the value of [tex]\( x - y \)[/tex] is:



Answer :

To find the values of [tex]\(x - y\)[/tex] given the equations [tex]\(x + y = 10\)[/tex] and [tex]\(\frac{1}{x} + \frac{1}{y} = \frac{5}{12}\)[/tex], follow these steps:

1. Set Up the System of Equations:
[tex]\[ x + y = 10 \quad \text{(Equation 1)} \][/tex]
[tex]\[ \frac{1}{x} + \frac{1}{y} = \frac{5}{12} \quad \text{(Equation 2)} \][/tex]

2. Express [tex]\(\frac{1}{x} + \frac{1}{y}\)[/tex] in Terms of [tex]\(x\)[/tex] and [tex]\(y\)[/tex]:
[tex]\[ \frac{1}{x} + \frac{1}{y} = \frac{x + y}{xy} \][/tex]
Substituting the value from Equation 1:
[tex]\[ \frac{x + y}{xy} = \frac{10}{xy} \][/tex]
Setting this equal to the given value from Equation 2:
[tex]\[ \frac{10}{xy} = \frac{5}{12} \][/tex]
Solve for [tex]\(xy\)[/tex]:
[tex]\[ 10 \cdot 12 = 5 \cdot xy \][/tex]
[tex]\[ 120 = 5xy \][/tex]
[tex]\[ xy = \frac{120}{5} = 24 \][/tex]

3. Form a Quadratic Equation Using [tex]\(x + y\)[/tex] and [tex]\(xy\)[/tex]:
[tex]\[ t^2 - (x + y)t + xy = 0 \][/tex]
Substituting [tex]\(x + y = 10\)[/tex] and [tex]\(xy = 24\)[/tex]:
[tex]\[ t^2 - 10t + 24 = 0 \][/tex]

4. Solve the Quadratic Equation:
Use the quadratic formula:
[tex]\[ t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
Here, [tex]\(a = 1\)[/tex], [tex]\(b = -10\)[/tex], and [tex]\(c = 24\)[/tex]:
[tex]\[ t = \frac{10 \pm \sqrt{10^2 - 4 \cdot 1 \cdot 24}}{2 \cdot 1} \][/tex]
[tex]\[ t = \frac{10 \pm \sqrt{100 - 96}}{2} \][/tex]
[tex]\[ t = \frac{10 \pm \sqrt{4}}{2} \][/tex]
[tex]\[ t = \frac{10 \pm 2}{2} \][/tex]
Therefore, the solutions are:
[tex]\[ t = \frac{10 + 2}{2} = 6 \][/tex]
[tex]\[ t = \frac{10 - 2}{2} = 4 \][/tex]
Thus, [tex]\(x = 6\)[/tex] and [tex]\(y = 4\)[/tex], or [tex]\(x = 4\)[/tex] and [tex]\(y = 6\)[/tex].

5. Find [tex]\(x - y\)[/tex] for Each Pair:
For [tex]\(x = 6\)[/tex] and [tex]\(y = 4\)[/tex]:
[tex]\[ x - y = 6 - 4 = 2 \][/tex]
For [tex]\(x = 4\)[/tex] and [tex]\(y = 6\)[/tex]:
[tex]\[ x - y = 4 - 6 = -2 \][/tex]

6. Conclusion:
The possible values of [tex]\(x - y\)[/tex] are [tex]\(\boxed{2 \ \text{and} \ -2}\)[/tex].