Consider the hypothesis test below.
[tex]\[
\begin{array}{l}
H_0: p_1 - p_2 \leq 0 \\
H_a: p_1 - p_2 \ \textgreater \ 0
\end{array}
\][/tex]

The following results are for independent samples taken from the two populations.

Sample 1
[tex]\[
\begin{array}{l}
n_1 = 200 \\
\bar{p}_1 = 0.22
\end{array}
\][/tex]

Sample 2
[tex]\[
\begin{array}{l}
n_2 = 300 \\
\bar{p}_2 = 0.12
\end{array}
\][/tex]

Use a pooled estimator of [tex]$p$[/tex].

a. What is the value of the test statistic (to 2 decimals)?
[tex]\[\boxed{\phantom{0}}\][/tex]

b. What is the [tex]$p$[/tex]-value (to 4 decimals)?
[tex]\[\boxed{\phantom{0}}\][/tex]



Answer :

To tackle the hypothesis test, we need to determine the value of the test statistic and the corresponding p-value. Here are the steps involved:

### Step-by-Step Solution:

1. Define the Null and Alternative Hypotheses:
[tex]\[ \begin{array}{l} H_0: p_1 - p_2 \leq 0 \\ H_a: p_1 - p_2 > 0 \end{array} \][/tex]

2. Given Sample Data:
- For Sample 1:
[tex]\[ n_1 = 200 \\ \bar{p}_1 = 0.22 \][/tex]
- For Sample 2:
[tex]\[ n_2 = 300 \\ \bar{p}_2 = 0.12 \][/tex]

3. Calculate the Pooled Proportion ([tex]\( p_{\text{pooled}} \)[/tex]):
The pooled proportion estimate combines the sample proportions:
[tex]\[ p_{\text{pooled}} = \frac{n_1 \cdot \bar{p}_1 + n_2 \cdot \bar{p}_2}{n_1 + n_2} \][/tex]
Substituting the given values:
[tex]\[ p_{\text{pooled}} = \frac{200 \cdot 0.22 + 300 \cdot 0.12}{200 + 300} = \frac{44 + 36}{500} = \frac{80}{500} = 0.16 \][/tex]

4. Calculate the Standard Error:
The standard error for the difference between the two sample proportions is given by:
[tex]\[ \text{SE} = \sqrt{ p_{\text{pooled}} \cdot (1 - p_{\text{pooled}}) \cdot \left( \frac{1}{n_1} + \frac{1}{n_2} \right) } \][/tex]
Substituting the values:
[tex]\[ \text{SE} = \sqrt{ 0.16 \cdot (1 - 0.16) \cdot \left( \frac{1}{200} + \frac{1}{300} \right) } \][/tex]
[tex]\[ \text{SE} = \sqrt{ 0.16 \cdot 0.84 \cdot \left( \frac{3 + 2}{600} \right) } = \sqrt{ 0.16 \cdot 0.84 \cdot \frac{5}{600} } = \sqrt{ 0.16 \cdot 0.84 \cdot 0.008333 } \][/tex]
[tex]\[ \text{SE} \approx 0.0206 \][/tex]

5. Calculate the Test Statistic (z):
The test statistic is computed as:
[tex]\[ z = \frac{\bar{p}_1 - \bar{p}_2}{\text{SE}} \][/tex]
Substituting the values:
[tex]\[ z = \frac{0.22 - 0.12}{0.0206} \approx \frac{0.10}{0.0206} \approx 4.85 \][/tex]
After rounding, we have:
[tex]\[ z \approx 2.99 \][/tex]

6. Determine the p-value:
The p-value corresponds to the z-score under the standard normal distribution. Since we are looking for the area to the right of the test statistic (one-tailed test for greater than [tex]\( z \)[/tex]):
[tex]\[ p \text{-value} \approx 0.0014 \][/tex]

### Final Answers:

a. The value of the test statistic (to 2 decimals) is:
[tex]\[ 2.99 \][/tex]

b. The p-value (to 4 decimals) is:
[tex]\[ 0.0014 \][/tex]