Choose the option that best answers the question.

The exponential function [tex]$f(x)=1145 e^{0.0325 x}$[/tex] models the gray wolf population of the Western Great Lakes, [tex]$f(x)$[/tex], [tex][tex]$x$[/tex][/tex] years after 1978. Use this function to project the gray wolf population of the Western Great Lakes, rounded to the nearest whole number, in 2025.

A. 4754
B. 5275
C. 55,593



Answer :

To project the gray wolf population of the Western Great Lakes in 2025 using the exponential function [tex]\( f(x) = 1145 e^{0.0325x} \)[/tex], let's go through the steps carefully.

### Step-by-Step Calculation:

1. Determine the number of years after 1978 that corresponds to 2025:

[tex]\[ \text{Years after 1978} = 2025 - 1978 = 47 \][/tex]

2. Evaluate the population function [tex]\( f(x) \)[/tex] at [tex]\( x = 47 \)[/tex]:

[tex]\[ f(47) = 1145 \cdot e^{0.0325 \cdot 47} \][/tex]

3. Calculate [tex]\( e^{0.0325 \cdot 47} \)[/tex] (approximated here for clarity):

Let's denote [tex]\( 0.0325 \cdot 47 = 1.5275 \)[/tex], then:

[tex]\[ e^{1.5275} \approx 4.606064 \][/tex]

4. Multiply by the initial population coefficient:

[tex]\[ f(47) = 1145 \cdot 4.606064 \approx 5275 \][/tex]

5. Round to the nearest whole number:

Since the function's output [tex]\( 5275 \)[/tex] is already a whole number, we don't need further rounding.

### Conclusion:

The projected gray wolf population of the Western Great Lakes in 2025, rounded to the nearest whole number, is 5275.

Thus, the correct option is:

b. 5275