If [tex]$C=2 \pi r$[/tex] and [tex]$C=24$[/tex], what is the value of [tex][tex]$r$[/tex][/tex]?

A. [tex]r=12 \pi[/tex]
B. [tex]r=\frac{24}{2 \pi}[/tex]
C. [tex]r=48 \pi[/tex]
D. [tex]r=\frac{48}{\pi}[/tex]



Answer :

To find the value of [tex]\( r \)[/tex] given the equation [tex]\( C = 2 \pi r \)[/tex] and [tex]\( C = 24 \)[/tex], follow these steps:

1. Start with the given equation:
[tex]\[ C = 2 \pi r \][/tex]
where [tex]\( C = 24 \)[/tex].

2. Substitute the given value of [tex]\( C \)[/tex] into the equation:
[tex]\[ 24 = 2 \pi r \][/tex]

3. Solve for [tex]\( r \)[/tex]:

- Isolate [tex]\( r \)[/tex] on one side of the equation:
[tex]\[ r = \frac{24}{2 \pi} \][/tex]

4. Simplify the expression:
[tex]\[ r = \frac{24}{2 \pi} = \frac{12}{\pi} \][/tex]

Therefore, the value of [tex]\( r \)[/tex] is [tex]\( \frac{24}{2 \pi} \)[/tex].

Among the given choices:
- [tex]\( r = 12 \pi \)[/tex]
- [tex]\( r = \frac{24}{2 \pi} \)[/tex]
- [tex]\( r = 48 \pi \)[/tex]
- [tex]\( r = \frac{48}{\pi} \)[/tex]

The correct answer is:
[tex]\[ r = \frac{24}{2 \pi} \][/tex]