Peter mixes [tex]\(4 \frac{1}{2}\)[/tex] cups of orange juice, [tex]\(1 \frac{1}{3}\)[/tex] cups of ginger ale, and [tex]\(6 \frac{1}{3}\)[/tex] cups of strawberry lemonade to make some punch. What is the total number of cups of punch that Peter makes?

A. [tex]\(11 \frac{3}{8}\)[/tex]
B. [tex]\(11 \frac{3}{5}\)[/tex]
C. [tex]\(12 \frac{1}{6}\)[/tex]
D. [tex]\(11 \frac{1}{2}\)[/tex]



Answer :

To determine the total number of cups of punch Peter makes, we'll add the three given amounts together: [tex]\(4 \frac{1}{2}\)[/tex] cups of orange juice, [tex]\(1 \frac{1}{3}\)[/tex] cups of ginger ale, and [tex]\(6 \frac{1}{3}\)[/tex] cups of strawberry lemonade.

Step 1: Convert each mixed number to an improper fraction

For [tex]\(4 \frac{1}{2}\)[/tex] cups of orange juice:
[tex]\[ 4 \frac{1}{2} = 4 + \frac{1}{2} = \frac{8}{2} + \frac{1}{2} = \frac{9}{2} \][/tex]

For [tex]\(1 \frac{1}{3}\)[/tex] cups of ginger ale:
[tex]\[ 1 \frac{1}{3} = 1 + \frac{1}{3} = \frac{3}{3} + \frac{1}{3} = \frac{4}{3} \][/tex]

For [tex]\(6 \frac{1}{3}\)[/tex] cups of strawberry lemonade:
[tex]\[ 6 \frac{1}{3} = 6 + \frac{1}{3} = \frac{18}{3} + \frac{1}{3} = \frac{19}{3} \][/tex]

Step 2: Convert these improper fractions to decimal equivalents, which are easier to add

[tex]\[ \frac{9}{2} = 4.5 \][/tex]
[tex]\[ \frac{4}{3} \approx 1.3333333333333333 \][/tex]
[tex]\[ \frac{19}{3} \approx 6.333333333333333 \][/tex]

Step 3: Add these decimal equivalents to find the total number of cups

[tex]\[ 4.5 + 1.3333333333333333 + 6.333333333333333 = 12.166666666666666 \][/tex]

Step 4: Convert the decimal back to a mixed number if needed

The decimal [tex]\(12.166666666666666\)[/tex] is equivalent to:
[tex]\[ 12 \frac{1}{6} \][/tex]

Therefore, the total number of cups of punch Peter makes is:
[tex]\[ \boxed{12 \frac{1}{6}} \][/tex]