Solve for [tex]$x$[/tex]:

[tex]\tan (x) = \frac{6}{8}[/tex]

[tex]x = \tan^{-1}\left(\frac{6}{8}\right)[/tex]

Round to the nearest hundredth.

[tex]x = \boxed{\phantom{0}}[/tex]



Answer :

To solve for [tex]\( x \)[/tex] given that [tex]\(\tan(x) = \frac{6}{8}\)[/tex], follow these steps:

1. Identify the given ratio:
We are given [tex]\(\tan(x) = \frac{6}{8}\)[/tex]. Simplify the ratio:
[tex]\[ \frac{6}{8} = 0.75 \][/tex]

2. Find the angle using the inverse tangent function:
Use the inverse tangent function [tex]\(\tan^{-1} (0.75)\)[/tex] to find [tex]\( x \)[/tex]:
[tex]\[ x = \tan^{-1}(0.75) \][/tex]

3. Convert the calculated angle from radians to degrees:
The output of [tex]\(\tan^{-1}\)[/tex] is typically in radians. To convert this value to degrees, use the conversion factor [tex]\(\frac{180}{\pi}\)[/tex] degrees per radian.

4. Perform the calculation (in degrees):
Calculating [tex]\(\tan^{-1}(0.75)\)[/tex] yields approximately [tex]\( 0.6435011087932844 \)[/tex] radians. Converting this to degrees:
[tex]\[ x = 0.6435011087932844 \times \frac{180}{\pi} \approx 36.86989764584402 \text{ degrees} \][/tex]

5. Round to the nearest hundredth:
Finally, round [tex]\(36.86989764584402\)[/tex] degrees to the nearest hundredth:
[tex]\[ x \approx 36.87 \text{ degrees} \][/tex]

Therefore, the value of [tex]\( x \)[/tex] is approximately:
[tex]\[ x \approx 36.87 \text{ degrees} \][/tex]