Use the properties of exponents to rewrite this expression. Then evaluate the rewritten expression for the given values to complete the statement.

[tex]\[
\left(11 j^{-3} k^{-2}\right)\left(j^3 k^4\right)
\][/tex]

When [tex]\( j = -8 \)[/tex] and [tex]\( k = 7 \)[/tex], the value of the expression is [tex]\( \square \)[/tex].



Answer :

Let's go through the solution step by step.

### Step 1: Rewrite the Expression Using Properties of Exponents
Consider the initial expression:

[tex]\[ \left(11 j^{-3} k^{-2}\right) \left(j^3 k^4\right) \][/tex]

We can use the properties of exponents to simplify the expression:
- [tex]\( j^{-3} \cdot j^3 \)[/tex]
- [tex]\( k^{-2} \cdot k^4 \)[/tex]

Using the property [tex]\( x^a \cdot x^b = x^{a+b} \)[/tex]:

1. [tex]\( j^{-3} \cdot j^3 = j^{-3+3} = j^0 = 1 \)[/tex]
2. [tex]\( k^{-2} \cdot k^4 = k^{-2+4} = k^2 \)[/tex]

Thus, the expression simplifies to:

[tex]\[ 11 \cdot 1 \cdot k^2 = 11k^2 \][/tex]

### Step 2: Evaluate the Rewritten Expression
Now, we evaluate the simplified expression [tex]\( 11k^2 \)[/tex] using the given values [tex]\( j = -8 \)[/tex] and [tex]\( k = 7 \)[/tex]. Notice that [tex]\( j \)[/tex] is no longer in the expression due to the simplification.

So we substitute [tex]\( k = 7 \)[/tex] into the simplified expression:

[tex]\[ 11k^2 = 11 \cdot (7^2) = 11 \cdot 49 = 539 \][/tex]

### Step 3: Complete the Statement
When [tex]\( j = -8 \)[/tex] and [tex]\( k = 7 \)[/tex], the original expression evaluates to:

[tex]\[ \boxed{539} \][/tex]