Select the correct answer.

Which expression is equivalent to the given expression?
[tex]\[ 3(x-7) + 4\left(x^2 - 2x + 9\right) \][/tex]

A. [tex]\(4x^2 - 5x + 15\)[/tex]

B. [tex]\(4x^2 + x - 12\)[/tex]

C. [tex]\(4x^2 + 11x - 15\)[/tex]

D. [tex]\(4x^2 + 5x - 16\)[/tex]



Answer :

To solve the given expression [tex]\(3(x - 7) + 4(x^2 - 2x + 9)\)[/tex] and determine which of the provided options it is equivalent to, let's break down the expression step by step.

1. Distribute the constants inside the parentheses:
- For [tex]\(3(x - 7)\)[/tex]:
[tex]\[ 3(x - 7) = 3x - 21 \][/tex]

- For [tex]\(4(x^2 - 2x + 9)\)[/tex]:
[tex]\[ 4(x^2 - 2x + 9) = 4x^2 - 8x + 36 \][/tex]


2. Combine the distributed parts:
[tex]\[ 3x - 21 + 4x^2 - 8x + 36 \][/tex]

3. Combine like terms:
- Combine the [tex]\(x^2\)[/tex] terms:
[tex]\[ 4x^2 \][/tex]

- Combine the [tex]\(x\)[/tex] terms:
[tex]\[ 3x - 8x = -5x \][/tex]

- Combine the constant terms:
[tex]\[ -21 + 36 = 15 \][/tex]

4. Write the simplified expression:
[tex]\[ 4x^2 - 5x + 15 \][/tex]

Therefore, the expression [tex]\(3(x-7) + 4(x^2 - 2x + 9)\)[/tex] simplifies to [tex]\(4x^2 - 5x + 15\)[/tex].

Thus, the correct answer is:
[tex]\[ 4x^2 - 5x + 15 \][/tex]