Select the correct answer.

What is the velocity of an 11-kilogram object with 792 joules of kinetic energy? Use [tex]$v=\sqrt{\frac{2KE}{m}}$[/tex].

A. [tex]$7 \, \text{m/s}$[/tex]
B. [tex][tex]$8 \, \text{m/s}$[/tex][/tex]
C. [tex]$9 \, \text{m/s}$[/tex]
D. [tex]$11 \, \text{m/s}$[/tex]
E. [tex][tex]$12 \, \text{m/s}$[/tex][/tex]



Answer :

To find the velocity of an 11-kilogram object with 792 joules of kinetic energy, we'll use the formula for kinetic energy:

[tex]\[ KE = \frac{1}{2}mv^2 \][/tex]

We rearrange this formula to solve for velocity [tex]\( v \)[/tex]:

[tex]\[ v = \sqrt{\frac{2KE}{m}} \][/tex]

Now, let's plug in the given values:
- [tex]\( KE = 792 \)[/tex] joules
- [tex]\( m = 11 \)[/tex] kilograms

Substitute these values into the formula:

[tex]\[ v = \sqrt{\frac{2 \times 792}{11}} \][/tex]

Simplify the expression inside the square root:

[tex]\[ v = \sqrt{\frac{1584}{11}} \][/tex]

Calculate the division:

[tex]\[ v = \sqrt{144} \][/tex]

Now, take the square root of 144:

[tex]\[ v = 12 \][/tex]

Therefore, the velocity of the object is [tex]\( 12 \, \text{m/s} \)[/tex].

The correct answer is:

E. [tex]\( 12 \, \text{m/s} \)[/tex]