3.5.3 Quiz: Nonlinear Systems of Equations
Question 4 of 10

Solve the system of equations:

[tex]\[
\begin{array}{l}
y = 2x + 1 \\
y = x^2 + 2x - 8
\end{array}
\][/tex]

A. [tex]$(-3, -5)$[/tex] and [tex]$(3, 7)$[/tex]
B. [tex]$(0, 1)$[/tex] and [tex]$(2, 5)$[/tex]
C. [tex]$(-3, 5)$[/tex] and [tex]$(3, 2)$[/tex]
D. [tex]$(-4, 0)$[/tex] and [tex]$(2, 0)$[/tex]



Answer :

Let's solve the given system of equations step by step:

[tex]\[ \begin{cases} y = 2x + 1 \\ y = x^2 + 2x - 8 \end{cases} \][/tex]

First, recognize that both equations are set equal to [tex]\(y\)[/tex]. This fact allows us to set the right-hand sides of the equations equal to each other:

[tex]\[ 2x + 1 = x^2 + 2x - 8 \][/tex]

Next, we will solve this equation for [tex]\(x\)[/tex]. Subtract [tex]\(2x + 1\)[/tex] from both sides to get:

[tex]\[ 0 = x^2 + 2x - 8 - 2x - 1 \][/tex]

Simplify:

[tex]\[ 0 = x^2 - 9 \][/tex]

This is a quadratic equation, which can be factored:

[tex]\[ 0 = (x - 3)(x + 3) \][/tex]

Setting each factor to zero gives us the solutions for [tex]\(x\)[/tex]:

[tex]\[ x - 3 = 0 \quad \Rightarrow \quad x = 3 \][/tex]
[tex]\[ x + 3 = 0 \quad \Rightarrow \quad x = -3 \][/tex]

Now we have two values for [tex]\(x\)[/tex]. To find the corresponding [tex]\(y\)[/tex] values, we substitute each [tex]\(x\)[/tex] value back into one of the original equations. Using [tex]\(y = 2x + 1\)[/tex]:

1. For [tex]\(x = 3\)[/tex]:

[tex]\[ y = 2(3) + 1 = 6 + 1 = 7 \][/tex]

So, one solution is [tex]\((3, 7)\)[/tex].

2. For [tex]\(x = -3\)[/tex]:

[tex]\[ y = 2(-3) + 1 = -6 + 1 = -5 \][/tex]

So, the other solution is [tex]\((-3, -5)\)[/tex].

Therefore, the solutions to the system of equations are [tex]\((-3, -5)\)[/tex] and [tex]\((3, 7)\)[/tex].

Hence, the correct answer is:
[tex]\[ \boxed{A. (-3,-5) \text{ and } (3,7)} \][/tex]