3.5.3 Quiz: Nonlinear Systems of Equations

Question 7 of 10

Solve the system of equations:

[tex]\[
\begin{cases}
y = x - 3 \\
y = x^2 - 5x + 6
\end{cases}
\][/tex]

A. [tex]\((0, -3)\)[/tex]

B. [tex]\((1, -2)\)[/tex] and [tex]\((5, 2)\)[/tex]

C. [tex]\((3, 0)\)[/tex]

D. [tex]\((2, 0)\)[/tex] and [tex]\((3, 0)\)[/tex]



Answer :

To solve the system of nonlinear equations, we need to find the values of [tex]\(x\)[/tex] and [tex]\(y\)[/tex] that satisfy both equations simultaneously. The given equations are:

1. [tex]\( y = x - 3 \)[/tex]
2. [tex]\( y = x^2 - 5x + 6 \)[/tex]

Step-by-Step Solution:

1. Set the equations equal to each other:
Since both expressions are equal to [tex]\(y\)[/tex], set the right-hand sides of the equations equal to each other:
[tex]\[ x - 3 = x^2 - 5x + 6 \][/tex]

2. Rearrange the equation:
Move all terms to one side of the equation to set it to zero:
[tex]\[ x^2 - 5x + 6 - x + 3 = 0 \][/tex]
Combine like terms:
[tex]\[ x^2 - 6x + 9 = 0 \][/tex]

3. Factor the quadratic equation:
The quadratic equation simplifies into:
[tex]\[ (x - 3)^2 = 0 \][/tex]
This implies that:
[tex]\[ x - 3 = 0 \implies x = 3 \][/tex]

4. Find the corresponding y-value:
Substitute [tex]\( x = 3 \)[/tex] back into the first equation [tex]\( y = x - 3 \)[/tex]:
[tex]\[ y = 3 - 3 \implies y = 0 \][/tex]

Therefore, the solution to the system of equations is:
[tex]\[ (x, y) = (3, 0) \][/tex]

After cross-referencing with the options provided:

A. [tex]\((0, -3)\)[/tex]

B. [tex]\((1, -2)\)[/tex] and [tex]\((5, 2)\)[/tex]

C. [tex]\((3, 0)\)[/tex]

D. [tex]\((2, 0)\)[/tex] and [tex]\((3, 0)\)[/tex]

The correct answer is:
C. [tex]\((3, 0)\)[/tex]