What is the [tex]$y$[/tex]-intercept of the graph of the equation [tex]$y=2\left(4^z\right)$[/tex]?

A. [tex]$(0, 8)$[/tex]
B. [tex]$(0, 2)$[/tex]
C. [tex]$(0, 4)$[/tex]
D. [tex]$(0, 6)$[/tex]



Answer :

To determine the [tex]\( y \)[/tex]-intercept of the graph of the equation [tex]\( y = 2 \left(4^z\right) \)[/tex], we need to understand the concept of a [tex]\( y \)[/tex]-intercept. The [tex]\( y \)[/tex]-intercept of a graph is the point where the graph crosses the [tex]\( y \)[/tex]-axis. At this point, the value of [tex]\( z \)[/tex] is 0.

Given the equation [tex]\( y = 2 \left(4^z\right) \)[/tex], we substitute [tex]\( z = 0 \)[/tex] into the equation to find the corresponding [tex]\( y \)[/tex]-value.

1. Start with the equation:
[tex]\[ y = 2 \left(4^z\right) \][/tex]

2. Substitute [tex]\( z = 0 \)[/tex]:
[tex]\[ y = 2 \left(4^0\right) \][/tex]

3. Evaluate [tex]\( 4^0 \)[/tex]:
[tex]\[ 4^0 = 1 \][/tex]

4. Now, multiply by 2:
[tex]\[ y = 2 \times 1 = 2 \][/tex]

Therefore, the [tex]\( y \)[/tex]-intercept of the graph of the equation [tex]\( y = 2 \left(4^z\right) \)[/tex] is [tex]\( (0, 2) \)[/tex].

The correct answer is:
B. [tex]\((0, 2)\)[/tex]