Altus-Intermediate Algebra 1 EOC Version A

Question 12

Solve [tex]x^2 + 8x = 20[/tex] by completing the square.

A. [tex]x = 2[/tex]
B. [tex]x = 2 \text{ or } x = -10[/tex]
C. [tex]x = -10[/tex]
D. [tex]x = 10 \text{ or } x = -2[/tex]

[tex]© 2024 \text{ Renaissance Learning, Inc. All rights reserved.}[/tex]



Answer :

To solve the quadratic equation [tex]\(x^2 + 8x = 20\)[/tex] by completing the square, follow these steps:

1. Start with the given equation:
[tex]\[ x^2 + 8x = 20 \][/tex]

2. Move the constant term to the other side:
[tex]\[ x^2 + 8x = 20 \][/tex]

3. Find the value needed to complete the square.
To complete the square, take half of the coefficient of [tex]\(x\)[/tex], which is 8, divide it by 2 to get 4, and then square it:
[tex]\[ \left( \frac{8}{2} \right)^2 = 4^2 = 16 \][/tex]

4. Add and subtract this value inside the equation:
[tex]\[ x^2 + 8x + 16 - 16 = 20 \][/tex]

5. Rewrite the equation by grouping the perfect square trinomial and keeping the balance:
[tex]\[ x^2 + 8x + 16 = 20 + 16 \][/tex]
[tex]\[ (x + 4)^2 = 36 \][/tex]

6. Take the square root of both sides of the equation:
[tex]\[ x + 4 = \pm \sqrt{36} \][/tex]
[tex]\[ x + 4 = \pm 6 \][/tex]

7. Solve for [tex]\(x\)[/tex] by isolating the variable:

- For the positive square root:
[tex]\[ x + 4 = 6 \][/tex]
[tex]\[ x = 6 - 4 \][/tex]
[tex]\[ x = 2 \][/tex]

- For the negative square root:
[tex]\[ x + 4 = -6 \][/tex]
[tex]\[ x = -6 - 4 \][/tex]
[tex]\[ x = -10 \][/tex]

Thus, the solutions to the equation [tex]\(x^2 + 8x = 20\)[/tex] are [tex]\(x = 2\)[/tex] and [tex]\(x = -10\)[/tex].

Therefore, the correct answer is:

B. [tex]\(x = 2\)[/tex] or [tex]\(x = -10\)[/tex]