Jimmy wants to write the set of parametric equations [tex]x = \frac{1}{2} t + 3[/tex] and [tex]y = 2t - 1[/tex] in rectangular form by eliminating [tex]t[/tex]. Which of the following equations would help him to eliminate [tex]t[/tex]?

A. [tex]t = 2(x - 3)[/tex]
B. [tex]t = 2(x + 3)[/tex]
C. [tex]t = \frac{y - 1}{2}[/tex]
D. [tex]t = 2(y + 1)[/tex]



Answer :

To write the set of parametric equations [tex]\( x = \frac{1}{2} t + 3 \)[/tex] and [tex]\( y = 2t - 1 \)[/tex] in rectangular form by eliminating [tex]\( t \)[/tex], we need to solve each equation for [tex]\( t \)[/tex] and then compare these expressions to find a consistent value for [tex]\( t \)[/tex].

First, let’s solve the equation [tex]\( x = \frac{1}{2} t + 3 \)[/tex] for [tex]\( t \)[/tex]:

1. Subtract 3 from both sides of the equation:
[tex]\[ x - 3 = \frac{1}{2} t \][/tex]

2. Multiply both sides by 2 to solve for [tex]\( t \)[/tex]:
[tex]\[ t = 2(x - 3) \][/tex]

So, one possible equation to help eliminate [tex]\( t \)[/tex] is:
[tex]\[ t = 2(x - 3) \][/tex]

Now, let’s solve the equation [tex]\( y = 2t - 1 \)[/tex] for [tex]\( t \)[/tex]:

1. Add 1 to both sides of the equation:
[tex]\[ y + 1 = 2t \][/tex]

2. Divide both sides by 2 to solve for [tex]\( t \)[/tex]:
[tex]\[ t = \frac{y + 1}{2} \][/tex]

So, another possible equation to help eliminate [tex]\( t \)[/tex] is:
[tex]\[ t = \frac{y + 1}{2} \][/tex]

Given the choices provided:
1. [tex]\( t = 2(x - 3) \)[/tex]
2. [tex]\( t = 2(x + 3) \)[/tex]
3. [tex]\( t = \frac{y - 1}{2} \)[/tex]
4. [tex]\( t = 2(y + 1) \)[/tex]

We can see that the correct equations that match our solved values for [tex]\( t \)[/tex] are:

1. [tex]\( t = 2(x - 3) \)[/tex]
3. [tex]\( t = \frac{y + 1}{2} \)[/tex]

Thus, the correct choices are:
- [tex]\( t = 2(x - 3) \)[/tex]
- [tex]\( t = \frac{y + 1}{2} \)[/tex]

Hence, Jimmy can use these equations to eliminate [tex]\( t \)[/tex] for writing the parametric equations in rectangular form. The correct choices are:

(1) [tex]\( t = 2(x - 3) \)[/tex] and (3) [tex]\( t = \frac{y + 1}{2} \)[/tex].