Which of the following expressions is equivalent to [tex]\left(12 x^4-4 x^3+7 x+6\right)+\left(3 x^2-4 x+14\right)[/tex]?

A. [tex]12 x^4-4 x^3+3 x^2+3 x+20[/tex]

B. [tex]15 x^6-4 x^3+3 x+20[/tex]

C. [tex]12 x^4-x^3+3 x+20[/tex]

D. [tex]15 x^6-8 x^4+21 x+6[/tex]



Answer :

To determine which of the given expressions is equivalent to [tex]\(\left(12x^4 - 4x^3 + 7x + 6\right) + \left(3x^2 - 4x + 14\right)\)[/tex], we will follow these steps to add the two polynomials together:

1. Write both polynomials in standard form, aligning like terms:
[tex]\[ 12x^4 - 4x^3 + 0x^2 + 7x + 6 \][/tex]
[tex]\[ 0x^4 + 0x^3 + 3x^2 - 4x + 14 \][/tex]

2. Add the corresponding coefficients of the like terms:

- Combine the [tex]\(x^4\)[/tex] terms: [tex]\(12x^4 + 0x^4 = 12x^4\)[/tex]
- Combine the [tex]\(x^3\)[/tex] terms: [tex]\(-4x^3 + 0x^3 = -4x^3\)[/tex]
- Combine the [tex]\(x^2\)[/tex] terms: [tex]\(0x^2 + 3x^2 = 3x^2\)[/tex]
- Combine the [tex]\(x\)[/tex] terms: [tex]\(7x - 4x = 3x\)[/tex]
- Combine the constant terms: [tex]\(6 + 14 = 20\)[/tex]

3. Write down the resulting polynomial:
[tex]\[ 12x^4 - 4x^3 + 3x^2 + 3x + 20 \][/tex]

After following these steps, we find that the polynomial expression equivalent to [tex]\(\left(12x^4 - 4x^3 + 7x + 6\right) + \left(3x^2 - 4x + 14\right)\)[/tex] is:
[tex]\[ 12x^4 - 4x^3 + 3x^2 + 3x + 20 \][/tex]

Thus, the answer is:
[tex]\[ \boxed{A} \][/tex]