Let's start by understanding the given problem. We are told that [tex]\( 16 + 4x \)[/tex] is 10 more than 14. We need to find the value of [tex]\( 8x \)[/tex].
1. Translate the verbal statement into an equation:
[tex]\[
16 + 4x = 14 + 10
\][/tex]
2. Simplify the right-hand side:
[tex]\[
14 + 10 = 24
\][/tex]
So, our equation becomes:
[tex]\[
16 + 4x = 24
\][/tex]
3. Solve the equation for [tex]\( x \)[/tex]:
- First, isolate the term with [tex]\( x \)[/tex]:
[tex]\[
16 + 4x - 16 = 24 - 16
\][/tex]
- Simplify both sides:
[tex]\[
4x = 8
\][/tex]
- Divide both sides by 4 to solve for [tex]\( x \)[/tex]:
[tex]\[
x = 2
\][/tex]
4. Find the value of [tex]\( 8x \)[/tex]:
[tex]\[
8x = 8 \cdot 2 = 16
\][/tex]
Thus, the value of [tex]\( 8x \)[/tex] is [tex]\( \boxed{16} \)[/tex].