Algebra 2A: Discussion Based Assessments

Consider the expression [tex]\sqrt{a^2 + 12} + |b|[/tex] when [tex]a = -2[/tex] and [tex]b = 14[/tex]. What is the value of the expression?



Answer :

Let's evaluate the given expression [tex]$\sqrt{a^2 + 12} + |b|$[/tex] step-by-step when [tex]\(a = -2\)[/tex] and [tex]\(b = 14\)[/tex].

1. Square of [tex]\(a\)[/tex]:
[tex]\[ a^2 = (-2)^2 = 4 \][/tex]

2. Inside the square root calculation:
[tex]\[ a^2 + 12 = 4 + 12 = 16 \][/tex]

3. Square root calculation:
[tex]\[ \sqrt{16} = 4 \][/tex]

4. Absolute value of [tex]\(b\)[/tex]:
[tex]\[ |b| = |14| = 14 \][/tex]

5. Final expression value:
[tex]\[ \sqrt{a^2 + 12} + |b| = 4 + 14 = 18 \][/tex]

Thus, the value of the expression [tex]$\sqrt{a^2 + 12} + |b|$[/tex] when [tex]\(a = -2\)[/tex] and [tex]\(b = 14\)[/tex] is:
[tex]\[ 18 \][/tex]