If [tex]$A$[/tex] and [tex]$B$[/tex] are two subsets of [tex]$U$[/tex] with [tex]$n(U) = 13$[/tex], [tex]$n(A) = 25$[/tex], [tex]$n(B) = 18$[/tex], and [tex]$n(A \cap B) = 7$[/tex], what is the value of [tex]$n(A \cup B)$[/tex]?

A. 36
B. 7
C. 30



Answer :

To find the value of [tex]\( n(A \cup B) \)[/tex], we can use the principle of inclusion-exclusion for sets. This principle is summarized in the formula:

[tex]\[ n(A \cup B) = n(A) + n(B) - n(A \cap B) \][/tex]

Let's identify the given values:

- [tex]\( n(U) = 13 \)[/tex]: This is the size of the universal set, but it doesn't affect the calculation for [tex]\( n(A \cup B) \)[/tex].
- [tex]\( n(A) = 25 \)[/tex]: This is the number of elements in set [tex]\( A \)[/tex].
- [tex]\( n(B) = 18 \)[/tex]: This is the number of elements in set [tex]\( B \)[/tex].
- [tex]\( n(A \cap B) = 7 \)[/tex]: This is the number of elements that are in both sets [tex]\( A \)[/tex] and [tex]\( B \)[/tex].

Now, substitute these values into the inclusion-exclusion formula:

[tex]\[ n(A \cup B) = 25 + 18 - 7 \][/tex]

Performing the arithmetic gives:

[tex]\[ n(A \cup B) = 43 - 7 = 36 \][/tex]

Thus, the value of [tex]\( n(A \cup B) \)[/tex] is [tex]\( 36 \)[/tex].

So, the correct answer is:
a) [tex]\( 36 \)[/tex]