Answer :

To determine the value of the function [tex]\( f(x) \)[/tex] when [tex]\( x = -5 \)[/tex], we follow these steps:

1. Identify the function: The function given is [tex]\( f(x) = 5x + 40 \)[/tex].

2. Substitute [tex]\( x \)[/tex] with [tex]\(-5\)[/tex] in the function:
[tex]\[ f(-5) = 5(-5) + 40 \][/tex]

3. Perform the operation inside the function:
- First, multiply [tex]\( 5 \)[/tex] by [tex]\(-5\)[/tex]:
[tex]\[ 5 \times -5 = -25 \][/tex]
- Next, add [tex]\( -25 \)[/tex] to [tex]\( 40 \)[/tex]:
[tex]\[ -25 + 40 = 15 \][/tex]

4. Result: Therefore, [tex]\( f(-5) = 15 \)[/tex].

So, the value of [tex]\( f(-5) \)[/tex] is [tex]\( 15 \)[/tex].

The correct answer is:
[tex]\[ \boxed{15} \][/tex]
15
F(-5)=5(-5)+40
F(-5)=-25+40
F(-5)=15