Copy and complete the table of values for [tex] y = x^2 + x [/tex].

What numbers replace [tex] A, B, [/tex] and [tex] C [/tex]?

[tex]\[
\begin{tabular}{c||c|c|c|c|c}
$x$ & -2 & -1 & 0 & 1 & 2 \\
\hline
$y$ & 2 & A & B & 2 & C \\
\end{tabular}
\][/tex]



Answer :

To complete the table of values for the function [tex]\( y = x^2 + x \)[/tex], we will substitute each value of [tex]\( x \)[/tex] into the function to find the corresponding [tex]\( y \)[/tex]-values.

The [tex]\( x \)[/tex]-values given are [tex]\(-2\)[/tex], [tex]\(-1\)[/tex], [tex]\(0\)[/tex], [tex]\(1\)[/tex], and [tex]\(2\)[/tex].

1. For [tex]\( x = -2 \)[/tex]:
[tex]\[ y = (-2)^2 + (-2) = 4 - 2 = 2 \][/tex]
This matches the given value in the table.

2. For [tex]\( x = -1 \)[/tex]:
[tex]\[ y = (-1)^2 + (-1) = 1 - 1 = 0 \][/tex]
Therefore, [tex]\( A = 0 \)[/tex].

3. For [tex]\( x = 0 \)[/tex]:
[tex]\[ y = (0)^2 + 0 = 0 + 0 = 0 \][/tex]
Therefore, [tex]\( B = 0 \)[/tex].

4. For [tex]\( x = 1 \)[/tex]:
[tex]\[ y = (1)^2 + 1 = 1 + 1 = 2 \][/tex]
This matches the given value in the table.

5. For [tex]\( x = 2 \)[/tex]:
[tex]\[ y = (2)^2 + 2 = 4 + 2 = 6 \][/tex]
Therefore, [tex]\( C = 6 \)[/tex].

So, the completed table is:

[tex]\[ \begin{tabular}{c||c|c|c|c|c} $x$ & -2 & -1 & 0 & 1 & 2 \\ \hline $y$ & 2 & 0 & 0 & 2 & 6 \\ \end{tabular} \][/tex]

Thus, the numbers replacing [tex]\(A\)[/tex], [tex]\(B\)[/tex], and [tex]\(C\)[/tex] are [tex]\( 0 \)[/tex], [tex]\( 0 \)[/tex], and [tex]\( 6 \)[/tex] respectively.